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Abstract
PHP is a popular language for building websites, but also notori-
ously lax in that almost every value can be coerced into a value
of any imaginable type. Therefore it often happens that PHP code
does not behave as expected.

We have devised a flexible system that can assist a programmer
in discovering suspicious pieces of PHP code, accompanied by a
measure of suspicion.

The analysis we employ is constraint-based, uses a limited
amount of context to improve precision for non-global variables,
and applies widening to ensure termination.

We have applied the system to a number of implementations
made by programmers of various degrees of proficiency, showing
that even with these technically rather simple means it is quite
possible to obtain good results.

1. Introduction
PHP is a dynamic language which means that variables can be
introduced at will, without any explicit declaration, and that any
particular variable can be assigned values of many different types
throughout its lifetime.

Although types are not visible in PHP code, they are still part of
the programmer’s conceptual universe. An operator such as addi-
tion does expect its arguments to have a type that allows addition,
like int or float. If such is not the case, then values are silently
coerced into values of a type that is compatible with the operation
in question. In fact, for (almost) any pair of types, such a coercion
exists. However, some coercions make more sense than others. For
example, a value 37 of type int can (losslessly) be coerced to the
string "37", but all array values are coerced to the string "Array".
The loss of information in the second coercion is quite large, and
we suspect that such a coercion was not really what the program-
mer intended.

Detecting such suspicious coercions is not something that the
PHP interpreter is suited for. Therefore, it would be useful to have
a tool that helps (novice) PHP programmers to obtain a list of such
suspicious coercions (and many other potential problems besides).
In this paper we discuss such a tool, PHP-validator.

In a strong typing situation, all errors need to be resolved before
a program can be run. Typically the programmer considers only
the first error, because usually one can depend on that being a
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real mistake, and not simply the consequence of another mistake
somewhere in the program. Indeed, many compilers only provide a
single type error to at the time.

For our system, the situation is quite different. First of all,
not every warning signals a mistake (false negatives exist), and
second, some mistakes are more serious than others. Therefore,
the tool lists quite a number of potential mistakes at once, and
the task of the programmer is then to find those that indicate the
presence of a bug. To lighten this task as much as possible, two
facilities have been built into our tool: a suppression mechanism
that allows the programmer to selectively suppress warnings (to
help deal with false negatives), and a prioritization mechanism that
allows the programmer to control the severity of each particular
kind of mistake.

The remainder of this paper is structured as follows. In Sec-
tion 2 we discuss the PHP language, in particular, those parts that
influence the design of the system and some of the assumptions
we make about the programs we analyse. We then proceed in Sec-
tion 4 with a description of the (constraint-based) type system we
employ. In Section 5 we describe the fixed point algorithm to com-
pute solutions to the constraints given by the type system, which
is made terminating by employing a widening function. Section 6
gives some more details about the tool itself. The results of apply-
ing our implementation to a number of PHP applications written
by students at various moments during their computer science cur-
riculum can be found in Section 7. In Section 8 we consider related
work and Section 9 concludes.

2. The PHP language
In this section we shortly discuss the PHP language, focusing in
particular on those aspects that play a role in the type system
discussed in the remainder of this paper.

PHP was originally designed as a set of Perl scripts, and a set
of CGI binaries written in C, with the name “Personal Home Page
Tools”. Later this name was changed to “PHP: Hypertext Proces-
sor”. Soon the language became popular among web programmers,
as an alternative to systems and languages such as ASP.NET and
Java Server Pages, that work in a similar fashion.

The language has a strong webpresence. We mention in partic-
ular the excellent website [10] that serves both as a language ref-
erence as well as a forum for discussing the ins and outs of the
language.

Although, there is no room to fully discuss all the features
of the language, we shall highlight some of the more interesting
aspects below. Here, we sometimes sacrifice precision to increase
concision. The complete syntax specification of the part of PHP
that we support can be found in Figure 6.1 of [4].

The PHP version we consider here is PHP 5.0. The language
supports many of the usual types: boolean, integers, floating point
numbers, strings, arrays and objects, but also resources which can



be understood as references to external entities such as files. Below
we shall often refer to the type num, which represents the union
of integers and floating point numbers. Indeed, many arithmetical
operators are defined to take nums and deliver num. Finally, some
functions may be passed values of function type, so called callback
functions.

Although the language does have a notion of types, the inter-
preter will never complain when you use a value of a particular
type in a context where another type is expected1. For example, the
addition operator expects two values of type num. If you pass it,
say, a string, the value is coerced into a numerical value according
to the rules specified by the language. In this particular case, the
string is parsed to see if it starts with something that seems like a
number; if the string does not start with a number, then the coerced
value is either 0 or 0.0, depending on the exact context. For exam-
ple, the string "12 monkeys" is coerced to 12 in a context where
an integer is expected. For every pair of types, the language defini-
tion specifies how the transformation should be performed. Some
of these coercions introduce a large loss of precision. For example,
any value of type array coerces to the same string value "Array".
Although coercions occur silently, explicit type casts are also sup-
ported. As we shall later clarify, this distinction is important within
the context of our system.

PHP is a dynamic language in the sense that variables can
be introduced at will, simply by introducing them in a statement
or expression. If a variable is first referred to in a non-assigning
context, then the type of that context determines the type and
through that type the default value for the variable, e.g., the empty
string in case of strings, and 0.0 in the case of floating point
numbers. Again the language specifies exactly for each type what
those values are. If a variable is assigned to as it first occurs, its
value, and therefore also its type, are determined by the assigned
value. It is typical for dynamic languages that the type of a variable
need not be fixed: a later assignment to the same identifier may
change its type.

PHP is in many ways like Perl, but many of the obscure features
of that language have been omitted or changed. For example, Perl is
a language that supports both static and dynamic scoping for local
variables. However, PHP only allows static scoping, and is similar
in that to most other languages of its kind.

Another distinction from Perl is that variables that are used or
assigned to in a function are, unless specified otherwise, considered
to be local to that function. In Perl such variables are, unless
specified otherwise, global. In PHP the keywords global and
static can be used to change to the scope of a particular variable.
Indeed, PHP even allows the programmer to switch between scopes
and access different values associated with variables of the same
name but residing in different scopes. The reader may want to try
out the code in Figure 1 in his favourite PHP interpreter.

The PHP language introduces a substantial number of built-
in variables, often for communicating with the outside world.
These variables may contain environment settings, $ ENV, or values
passed to the script from an HTML form, $ POST and $ GET. All
of these variables exist at the global level, so to refer to any of these
inside a function, the programmer would need to explicitly declare
them global every single time. This is avoided by allowing to de-
clare variables to be superglobals, making their scope global by
default when used inside a function. A programmer can define his
own superglobals, but more important are those provided by PHP
itself, the autoglobals. Example include $GLOBALS that contains
all the global variables (which offers a way to access the global
variant of an identifier name without losing the local version), and
$ ENV, $ POST, and $ GET. Note that in previous versions of PHP

1 Except when you use a non-resource value where a resource is expected.

<?php
function staticgloballocalmess()
{

$bad = 123;
$badref =& $bad;
echo "$bad\n";
global $bad;
echo "$bad and $badref\n";
$bad = 345;
static $bad;
echo "$bad and $badref\n";
$bad = 919;
echo "$bad and $badref\n";
global $bad;
echo "$bad and $badref\n";
static $bad;
echo "$bad and $badref\n";

}
$bad = 999;
staticgloballocalmess();
echo "$bad\n";
?>

Figure 1. Static, local, and global scope ad nauseam

these variables had different names, like $ HTTP GET VARS. For
legacy reasons, we support both forms, although the latter form is
currently deprecated.

It would take us too far afield to discuss the precise forms of
expressions and statements. Suffice to say that both are to a large
extent similar to many mainstream languages such as Perl, Java,
and C, including the usual loops, conditionals and assignments.

2.0.1 Limitations
PHP is a rather large language and, as our Figure 1 intended to
show, it has some obscure features. For both reasons, our analysis
and prototype implementation do not cover it completely. These are
the limitations we imposed:

• The main restriction is that we do not support classes and ob-
jects in our prototype. We found that adding support for these
directly involves a lot of work, but conceptually offers little that
is new. In our experience as teachers of PHP, only few students
define their own classes in PHP. On the other hand, many li-
braries do depend on them. The try-catch construction de-
mands the use of classes, so we omitted those too.

• As the example in Figure 1 shows, global and static declara-
tions can occur anywhere and repeatedly inside a function. Our
implementation, however, insists that global declarations inside
functions only occur at the start of the function, followed by
the static variable declarations, and finally the rest of the state-
ments.

• PHP allows the textual inclusion of code by means of the
include statement. We demand that arguments to include are
literal string constants. E.g., include ("helpers.inc"); is
allowed, but include ($helpers . ".inc"); is not. This
obviates performing dataflow analysis to determine possible
values for $helpers.

• PHP, like Perl, provides support for HereDoc. This facility
allows the programmer to escape to text mode, but retaining the
ability to interpolate variables. An example is the following:

$signature = <<<EOS
best regards,



$name.
---
Contact me at $mail at gmail.com
EOS;

Our tool, however, does not support HereDoc. However, every
PHP program with Heredoc can be quite easily converted to a
PHP program without (using string concatenation).

• Every case inside a switch must end with a break, so no fall-
through is allowed.

• Programmer-defined superglobals are not allowed; knowing
which exist and when they came into existence is quite com-
plicated, and for the kind of programs we want to analyse, not
worth the effort. The superglobals that are part of PHP itself are
supported.

• Functions may only be declared at top level, e.g., not inside
a conditional statement. Function definitions may, however, be
inserted by include statements.

• The unset construct that deletes identifiers is not supported.
• In our type system, callback parameters for functions are treated

as strings. We do not interpret the contents of these strings, so
when used the functions that are called are not analysed.

From the above list, the restrictions that we believe to have the
most practical impact are the omissions of classes and try-catch,
HereDoc, and the switch statement. Except for the amount of work
involved, we believe the concepts can be captured by our approach
as well. In the case of classes, we do believe that the performance of
the system may strongly degrade. In Section 9 we give some ideas
how this degradation in performance may be countered.

3. Example
In this section we discuss the results of running our tool on a small
piece of PHP code (see Figure 2). For reasons of space, the example
is necessarily short. We hope it still gives the reader a flavour of
what the system can do.

Consider the results in Figure 3. The system starts by indicating
which analyses were applied (this can be changed by modifying a
configuration file). It then supplies a list of warnings, each accom-
panied by a priority. The priorities for the warnings are determined
based on settings made in the configuration file. This makes it pos-
sible for the user to highlight certain mistakes, by assigning high
priorities to them (which for now must be done by modifying the
source file src/php/analysis/typing/TypeInference.java
in the distribution (see Section 6)).

The first warning in Figure 3 arises at line 19, where the sys-
tem discovers that a variable $index is used without having first
been assigned to. The second warning addresses the same problem
arising at line 20. We have chosen not to collapse similar warnings,
for two reasons. First, this is in general not a trivial exercise, and,
second, the severity of a potential problem is stressed by having
multiple warnings devoted to it.

The system also finds that the (global) variable $gbl is assigned
values of distinct types, listing the two types in the message. The
final warning in the listing can be viewed as an immediate conse-
quence of this problem, pointing to possible places where the mul-
tiplicity of types may have consequences. Because the system has
evidence that $gbl may at some point have an array type, and echo
needs an argument of type string, there is a potentially lossy con-
version from array to string. Our analysis is designed to collapse
the types that a global variable may have during execution into a
single set of types. This is different for local variables for which
we have a set for every program point inside the function where it

1 <?php
2
3 function allOne () {
4 $a = 1;
5 $gbl = $a + 1;
6 $a = "one";
7 echo $a;
8 }
9

10 function allBoo () {
11 global $gbl;
12 $a = "boo";
13 $gbl = "boo";
14 }
15
16 $gbl = array("boo");
17 echo count($gbl) . "\n";
18
19 while ($index < count($gbl)) {
20 $entry = $gbl[$index] . "\n";
21 }
22
23 $cnt = $cnt + 1;
24
25 allOne();
26 allBoo();
27
28 echo $gbl;
29 ?>

Figure 2. An example piece of PHP code

is used. Therefore, the system cannot discover that in actual fact,
everything happens to be fine: during the call to count the variable
is an array, during the execution of echo it is of type string.

The message may be considered a false negative: we get a
warning, but nothing is wrong. However, from a didactic point of
view, it may be wiser to present the warning anyway. People tend
to move around their code, which easily invalidates all kinds of
assumptions about when a variable is of a particular type. We think
it is wiser to inform the programmer of the fact that a particular
global identifier can take on values of different type, so that he can
make up his mind whether it would be safer to introduce a new
variable for one of its uses instead.

The above reasoning may be defensible for global variables, it
certainly is not for local ones. Indeed, our system does not complain
about the fact that the local variable $a has values of different
types, as long as it concerns local variables that belong to different
functions. Therefore, it does not complain about the variable $a in
the function allBoo, but it does complain about the type change to
the variable $a in the function allOne.

The final message concerns the fact that a particular variable
is used both globally and locally in a function. This warning can
be very important to Perl programmers, because they are used to
having variables inside a function being assigned global scope by
default. Again, the programmer may want to rename one of the two
to avoid this sort of clash. If he prefers to keep it this way, he can
get rid of the message by suppressing it.

The fact that we discover the undefined use of of $index is
actually a lucky coincidence; the analysis was not tailored to obtain
this kind of result. The reason that it is found at all, is because
there is no assignment to $index in the program, which makes it
undefined throughout the program. Because, as explained above,
we store only a single set of types for each global variable, and this



Reading file data/paper-example.php
Performing analysis: RE:CODE_GLOBAL_NAMES
Performing analysis: SD:TYPE_ASSIGNS, SD:TYPE_CONDITIONS
Performing analysis: FP:TYPE_INFERENCE

Warnings:
data/paper-example.php:19 Priority: 0.8
Class: FP:TYPE_INFERENCE - NEW_VARIABLE
Message: Undefined variable found: $index
Expected: $index=[num]
Found: $index=[]

data/paper-example.php:20 Priority: 0.8
Class: FP:TYPE_INFERENCE - NEW_VARIABLE
Message: Undefined variable found: $index
Expected: $index=[string, int]
Found: $index=[]

data/paper-example.php:10 Priority: 0.7
Class: FP:TYPE_INFERENCE - MULTI_TYPE_VAR
Message: Multiple possible types found for

variable $gbl
Found: $gbl=[string, array[string]]

data/paper-example.php:6 Priority: 0.5
Class: FP:TYPE_INFERENCE - TYPE_CHANGE
Message: Type has changed for variable $a
Expected: $a=[int]
Found: $a=[string]

data/paper-example.php:3 Priority: 0.4
Class: RE:CODE_GLOBAL_NAMES - LOCAL_NAME_CLASH
Message: Local variable $gbl in function allOne is

also used in the main program
Found: local=[$gbl]

data/paper-example.php:28 Priority: 0.4
Class: FP:TYPE_INFERENCE - COERCION_TO_ARRAY
Message: array to non-array coercion for variable $gbl
Expected: $gbl=[string]
Found: $gbl=[string, array[string]]

FP:TYPE_INFERENCE: 5 warning(s)
TYPE_CHANGE: 1
COERCION_TO_ARRAY: 1
MULTI_TYPE_VAR: 1
NEW_VARIABLE: 2

RE:CODE_GLOBAL_NAMES: 1 warning(s)
LOCAL_NAME_CLASH_WITH_MAIN: 1

Total warnings found: 6
Total Time used: 0.304s.
Files: 1

Figure 3. The result of applying PHP-validator to Figure 2

type ::= type set | P(function type)
base type ::= int | float | bool | string | resource

| array[base type] | array[any]
type set ::= P(base type) | ∅ | any
function type ::= (type set)∗ → result type
result type ::= type set | void

Figure 4. The type language

set will be {int} for $cnt due to the assignment on line 23, we
cannot discern that $cnt was used when it was still undefined. As
it turns out, the use of $cnt even turns out to be compatible with
the way it was used. It is as if, from the perspective of the system,
the $cnt was of type int during the whole of the main program.

Although this behaviour may seem a shortcoming at first,
changing this has some serious consequences. First, it will make
the analysis (much) more costly, because we need to be able to
have distinct sets of types for each global variable in each program
point. Second, with the current analysis it pays to program cleanly.
It is therefore advisable to add a different form of analysis to the
system, similar to that employed by Java compilers to determine
which assignments are well-defined to discover the undefinedness
of $cnt in some other way, and not by making the analysis in this
paper more refined.

The report generated by our tool concludes with a summary,
listing for each type of warning, how many times it occured, and
the total number of warnings derived from the code. The system
also indicates how long it took to obtain the results.

4. The constraint-based type system
The type system we use is straightforward. We employ constraints
to specify the expectations for the types of expressions, and how
they should propagate through the program. We benefit here from
the fact that most functions and operators do not actually propagate
types, in the sense that not the types of the arguments, but the return
type of operators and functions determine the type of expressions.
It should be noted that it is possible to define parametrically poly-
morphic functions in PHP, for example an identity function that
simply returns its argument. Although our type system cannot infer
polymorphic types based on the source code, a programmer may
specify such a type for a function and have the system use that in-
stead (see Section 6).

4.1 The type language
We introduce the range of types that we need in order to formulate
and implement the soft typing system. The complete syntax for
types can be found in Figure 4.

We associate a set of types with each identifier, variable or func-
tion. There are two kinds: value type sets, type set, and function
type sets, P(function type). The value type sets will be used for
ordinary variables, those that start with the symbol $.

A variable that is never used will be associated with the empty
set, ∅; a variable of which no information is known about the
types it may take will be associated with any. The latter should
be understood as representing the set of all (value) types. The base
types consist of the usual suspects: int, float, bool, and so on, but
also arrays of which the elements are base types, and a special
type array[any]. As one might expect, the latter type represents an
infinite set of types, i.e., the smallest solution to the equation

τ = {array[τ ] | τ is a base type} .
Functions are associated with a set of function types. Each

function type consists of a (possibly empty) list of type sets, one



for each argument, and a result type. The result type is either a
simple type set, or the special type void which represents the fact
that no value is returned, i.e., the function is a procedure.

From the grammar of Figure 4, we can easily construct a com-
plete lattice of value type sets, based on the partial ordering of sub-
sets on types: τ ⊆ τ ′ if the set of values represented by τ is a subset
of that represented by τ ′. For example, ∅ ⊆ τ for all value type sets
τ , {int} ⊆ {int, float}, and {int, float} ⊆ any. The lattice does not
exhibit a finite height. An example of an infinite chain is

{array[int]} ⊆ {array[int], array[array[int]]} ⊆

{array[int], array[array[int]], array[array[array[int]]]}...
It is actually quite easy to come up with a PHP program in

which a variable actually obtains these types during an (infinite)
execution:

$a = 1;
while (1 < 2) {
$a = array($a);
print_r($a);

}

4.2 The constraint language
We formulate our type system by specifying for each expression, or
statement, the constraints that should be imposed on the types. The
language of constraints we use is maybe larger than expected. This
has to do with the fact that in some cases we want to propagate type
information from one expression to another: if we add two values,
then the type of the expression becomes num. On the other hand,
if the values we add are non-numerical, then a warning should be
issued at this point. Even so, a coercion does not change the types
of those arguments.

In our specification, we label expressions with unique labels,
denoted by `, `1, .... A labelled expression or statement is then
written e`. During fixed point algorithm, we shall be computing
sets of types for all program points `; these sets of types are denoted
type(`).

The following three basic types of constraints are employed by
our constraint-based type system:

{τ1, ..., τn} ⊆ type(`)
This constraint forces the types resulting for the expression e la-
belled with ` to be {τ1, ..., τn}. Often the type set is a singleton,
in which case we write ` := τ instead. This type of constraint is
often used in assignment contexts, or for expressions that have
an operator such as + at top-level.

` ≡ τ
The constraint ` ≡ τ does not introduce new types for `, but
asserts that a type τ is expected for `. This does not mean that
` will actually be of this type, and so the assertion may fail. We
use these constraints to detect (possible hazardous) coercions
(after fixed point iteration). If more than one expected type is
possible for `, we write ` ⊆≡ {τ1...τn}.

`1 ⇐ `2
This constraint implies a data-flow from `2 to `1. In other
words, we should enforce that type(`1) ⊆ type(`2). Some-
times, we use the latter notation directly.

For reasons of space, we cannot include the complete collection
of type rules for the language, and restrict ourselves to a few
illustrative cases. For the remaining rules, the reader may consult
Section 7.3 of [4].

Figure 5 contains a number of typical constraint collecting rules
for the language. Constraints are associated with statements and
expressions alike: C?[e`] is defined to be the set of constraints

contributed by the statement or expressions labelled `, excluding
the constraints contributed by any subexpressions; these are added
implicitly.

We consider each of the constraint rules in turn. The first is
straightforward: whenever we encounter an expression that looks
like a floating point number, we insist that the type is float. For array
indexing, we should verify that v is indeed of array type, containing
elements of whatever type. The expression used as index must
evaluate to a string or a number. The result type of the expression is
the type of the element of the array. This is formulated by by means
of a array type deconstructor: fromarray, which simply peals off
the outer array constructor.

The rule for an explicit type cast is an important one: the type
of the result is forced to be the type implied by the cast, but
more importantly, there is no expected type constraint. This implies
that for the type system a type cast cannot go wrong. The rule
allows programmers to insert explicit casts and thereby may get
rid off type warnings (see Section 7). The rule for binary boolean
operators specifies that the operands should be of type num, and
that result type must be bool. For the conditional expression, the
types of the then and else part are propagated to the conditional,
and we verify that the type of the conditional expression is indeed
boolean.

The while statement is actually quite boring. The only demand
we need to make here is that the type of the condition is boolean.
Finally, we consider the foreach statement that iterates over an array
and binds the contents to the . First of all, the type of e1 should be
consistent with an array type. Second, the type of the identifier here
introduced should be set to the element type of the array.

We conclude here by shortly discussing how functions are han-
dled. A function call is straightforward: we simply propagate the
types of the argument expressions to the corresponding formal pa-
rameter. However, we need to take into account that fewer argu-
ments than necessary may be passed, and that the types of some of
the default expressions should be used instead. Each return state-
ment inside a function f propagates the types of the returned ex-
pression to a special type set resultf , which in turn is propagated
back the call sites, that provided the precise sequence of types that
led to this particular return set of types. This is handled by means
of context, and discussed in the next section.

5. The type inference algorithm
To compute the sets of types for the identifiers, we use a variant
of the Maximal Fix Point algorithm, see, e.g., Section 2.4 of [13].
In this particular case, the approach is a form of abstract interpre-
tation with a suitable widening operator to ensure termination [8].
Widening is necessary, because the worst case complexity of the
algorithm includes the height of the type lattice, which is infinite in
our case.

The analysis can also be viewed as a form of dataflow analysis,
propagating and transforming environments (mappings from vari-
ables to typesets) along the edges of the flow graph of the program.
Indeed, this intuition is a bit closer to the worklist implementation
that we use.

5.1 The widening
In dataflow analysis, whenever execution paths join up in the pro-
gram, the information from different paths is combined into a sin-
gle analysis value, in our particular case by taking the union of the
sets of possible types for each variable. For example, in the state-
ment following a conditional, we compute the set of types for each
variable $var by taking the union of the types for that variable at
the end of the then-part and the end of else-part. If the lattice is of
infinite height, it may well be that we have shall have to compute
that union an infinite number of types, leading to non-termination



C?[float`] = {` := float} (e.g. C?[6.5`] = {` := float})
C?[(v`1 [e`2 ])`] = {` ≡ fromarray(τ) | τ ∈ type(`1)} ∪ {`1 ≡ array[any], {int, string} ⊆≡ type(`2)}}
C?[((τ)e`1)`)] = {` := τ} where τ ∈ base type
C?[array(e`1

1 , ..., e
`n
n )`] = {array[τ ] ⊆ type(`) | τ ∈ type(`i), i ∈ {1...n}}

C?[(e`1
1 ⊕ e

`2
2 )`] = {`1 ≡ num, `2 ≡ num, ` := bool} where ⊕ ∈ { <, >, <=, >=}

C?[(e`1
1 ? e`2

2 : e`3
3 )`] = {`1 ≡ bool, `2 ⊆ type(`), `3 ⊆ type(`)}

C?[(while ( e`1 ) S`2 )`] = {`1 ≡ bool}
C`[(foreach (e`1 as v`2) S)`] = {`1 ≡ array[any], {fromarray(τ1) | τ1 ∈ type(`1)} ⊆ type(`2)}

Figure 5. The constraint rules specification for a part of PHP

of the analysis. To avoid an infinite chain of ever larger sets we do
not simply take the union, but instead apply a widening operator
that approximates ∪. This corresponds intuitively to taking larger
steps in the lattice to ensure that we end up in a solution, i.e., a re-
ductive point, in finite time. The price we pay is that the analysis
result we compute is not guaranteed to be a least fixed point, the
most precise analysis result that satisfies the constraints. The result
does, however, satisfy the constraints.

To determine a suitable widening operator, we first need to
answer the following question: how are we going to employ the sets
of types that we compute? If the set of types for a variable contains
exactly two types, then we probably want to give a warning to
the programmer that a type change may occur for that particular
identifier, listing those two types explicitly in the message. But
what if it concerns ten types, or a hundred? Does it make sense to
list them all? We don’t think so. At some point, the number of types
becomes so large that the types themselves are irrelevant, only the
fact that the set of types is too large. This is the key to our choice
for a widening function.

First we introduce some auxiliary definitions. The array depth
of a base type is defined as follows:

d(τ) =

(
d(τ ′) + 1 if τ = array[τ ′]
0 otherwise

We extend d to sets of types by taking the minimum depth over all
the element types:

d(s) = min{d(τ) | τ ∈ s} .
For any constant k, we now define the widening operator∇k on

sets of value types as follows:

∇k(s1, s2) =

(
s1 ∪ s2 if |s1 ∪ s2| ≤ k
{arrayd(s1∪s2)[any]} otherwise

Here, array0[t] = t, and arrayn[t] = array[arrayn−1[t]], for
n > 0. For example, if at least one of the types in s1 ∪ s2 is a non-
array type, then the result is any, which indicates that we have lost
all concrete information about the types of a particular identifier. If,
on the other hand, all elements of s1∪s2 are of the form array[τ ] for
non-array types τ , then we obtain the more precise approximation
array[any]. Note that in the latter case, during further iteration we
may add new types to the set again. However, adding array[int] to
array[any] has no effect, so to change the set, only types of lesser
depth can be added. This ensures that in the end we either converge
or end up in any.

Function types are treated differently. For functions we want to
discover whether their type is non-deterministic in the following
sense: given the types of its arguments, is it possible that the return
value of the function is of indeterminate type. We do want to allow
that we can derive different return types for different sequences of
argument types. Since, by the widening described above, the sets
of types for all identifiers are of restricted size, and a function has

a fixed number of arguments, we only need to consider a finite
number of combinations for each function. Note however that in
the worst case this number can be f ∗nk, where k is the maximum
number of types in the type sets, f is the number of functions and
n is the maximum number of parameters. In practice, this is not a
problem.

5.2 The algorithm
In the master thesis of the first author, the algorithms are introduced
step by step. Due to reasons of space, that is not possible here.
Therefore, we describe only the initial algorithm without support
for functions and context (see Section 2.5 of [13]) and for the
different ways of dealing with local, global and static variables. We
then describe how these can be added, but do not give the extended
algorithms.

The algorithm is a worklist algorithm, a variant of the standard
Maximal Fixed Point algorithm (see, e.g., Section 2.4 of [13]).
Usually, to each program point two analysis values are associated:
the entry value that describes the types of identifiers right before
the execution of a statement, and the exit value, that similarly
describes the types immediately afterwards. In our case, we add
a third environment, which describes the expected types for each
variable.

The values that we compute are environments (mappings from
variables and functions to type sets) which we denote by TEnv.
Note that variable names and function names are lexically different,
the former always starting with a $-symbol.

The program flow is specified only on statement level: the ef-
fects of expressions (e.g. assignment subexpressions) are accumu-
lated in their evaluation order, which is from left to right, where
inner expressions are evaluated first. These details are handled by
the function transfer function which is the function that actu-
ally enforces the constraints generated for the statement currently
under consideration.

During initialization, we start without any variables and the
worklist is set to the entry point of the program, F0.

Then the algorithm starts to iteratively compute better approx-
imations to the sets of types in the program. It does so by taking
an arbitrary dataflow-edge from the worklist, and retrieving the
entry and exit environments associated with it from the variable
analysis :: P → TEnv × TEnv × TEnv that stores the three
environments for each program point. It then makes sure that for
each variable the exit sets satisfies the constraints for the statement,
given the input sets of types for the variables used in the statement.
During this process the types of many variables may change. If
the exit environment does not change, then we proceed to the next
worklist edge. If it did change, then we should propagate the newly
found exit environment to all the statements that follow the current
one in the dataflow graph. These nodes are then also added to the
worklist for later consideration.



INPUT: The set of constraints C?[E?], the set of program points P?, the unification (widening)
operator∇, the program entry point F0

OUTPUT: analysis : P → TEnv × TEnv × TEnv

METHOD: Step 1: Initialization
F := flow graph from P?;
W.push(F0);
foreach p in P? do analysis(p) := (∅, ∅, ∅);

Step 2: Iteration
whileW 6= nil do

edge := W.pop(); node := edge.to;
(entry, exit, ) := analysis(node);
constraints := set of constraints Cnode, derived from C?[E?], without expected types;
new set := transfer types(entry, constraints,∇);
exit′ := exit t new set;
if exit′ 6= exit then

exit := exit′;
foreach node′ ∈ P? : (node, node′) ∈ F do

W.push(node, node′);
(entry′, , ) := analysis(node′);
entry′ := entry′ t exit′;

Step 3: Calculate the expected types
foreach node ∈ P? :if analysis(node) 6= ⊥ then

( , , expected) := analysis(node);
constraints := set of constraints Cnode, derived from C?[E?], with only expected types;
expected := calculate expected(constraints,∇);

Step 4: Return the solution
return analysis;

Figure 6. The worklist algorithm for fixed point computation

When the iteration of Step 2 terminates, the worklist is empty,
and a solution has been found. Step 3 then verifies which of the
expected constraints is inconsistent with the analysis result.

In the next step, we add functions to the process. The main
consideration here is that we want to introduce context at this point:
Instead of having two environments for each program point, we
have two environments for each combination of program point and
context. When considering an ordinary intraprocedural flow edge
in the iteration step, we simply apply Step 2 for each context value
independently. When calling a function we have to make sure that
a context shift takes place. Typically, context is chosen to be the
set of call strings of a finite length k (typically k = 3 during our
analysis). These call strings form an abstraction of the call stack,
by listing the k most recently called functions. When calling the
function p the environments associated with a context value [q],
will be associated with the context value [p, q] inside the function.
Function return is dealt with similarly, unwinding the call string
again.

The final addition is to deal differently with global, static and
local variables. The above exposition behaves as if all variables
are local; we do something different for global and static vari-
ables. Let’s first look at global variables. As we said earlier, we
have chosen to have only a single set of types for each global vari-
able, as if there is only a single program point, and a single context
value for these. This saves a lot of space, but also complicates mat-
ters somewhat. What happens if the type set for a global variable
changes? Well, potentially all the statements and expressions that
use this variable have to be reconsidered. Therefore all these pro-
gram points must be added to the worklist. Something similar can

be done for static variables, except that static variables are associ-
ated with a particular function and so we can retrict ourselves to
adding program points for statements and expressions inside the
function that depend on it.

6. The implementation
We have implemented a prototype which implements soft type
inference, under the limitations described in Section 2. The im-
plementation was made in Java; the parser was made using the
JavaCC system [14]. Our implementation can be checked out with
subversion (http://subversion.tigris.org/):

svn checkout \
https://svn.cs.uu.nl:12443/repos/php-validator

It should be noted that the program does not compile with
javac 1.5.x, but it will compile with javac 1.6.x and Eclipse Java
Compiler. Further details on compiling and using the program can
be found in the README file that is part of the check out.

Like any modern language, PHP comes with a large number of
built-in functions. For these functions no code is supplied that can
be accessed by the analyser. Instead, we have made a list of type
signatures for no less than 521 functions, constants and autoglobals
available to the programmer. These are by no means all, but we
believe that we have covered all of the commonly used ones. A
full list can be found and, if the need arises, adapted in the file
data/function-types.types in the checked out distribution.

For example, for the function trim two type signatures are
given, as follows:



Case Files Lines Author
Case 1 267 22408 Mainly Bachelor students, but

also some master students
Case 2 106 11626 Bachelor students
Case 3 96 16924 Bachelor and Master students
Case 4 85 9346 a project by the first author

Figure 7. Additional statistics for each of the test cases

trim=[[[string]] => [string],
[[string],[string]] => [string]]

The above line should be read as follows: we associate with
trim a comma-separated list of signatures, the first of which takes
a single string as an argument and returns a string, the second also
returns a string, but takes two string arguments. As the reader can
verify in the PHP documentation, the function trim may indeed
take two arguments, but the second one is optional.

A nice additional feature of the function list is that the program-
mer can specify (polymorphic) type signatures for any function he
might write. Our type system cannot discover that a function imple-
ments a polymorphic function, e.g., the identity function. However,
the programmer may add a function with its polymorphic type to
the function list, so that it can be used properly during type during
analysis.

A second configuration file data/analysis-example.txt
exists, in which the programmer specifies various parameters for
running the system, e.g., which analyses should be executed. In-
spired by the Valgrind framework [12], it is possible to specify here
that certain warnings for a particular analysis should be suppressed.
The suppression may apply to the warning as a whole, or it may
apply to particular identifiers only. For example, the configuration
file may contain

...
analysis=FP:TYPE_INFERENCE
suppress=COERCION_NUM
suppress=COERCION_TO_ARRAY for $ar

analysis=RE:CODE_GLOBAL_NAMES
...

Finally, we would like to remark that the tool provides a large
number of additional analyses for PHP, not discussed in this paper.
Examples are the validation of correct use of $ GET and $ POST
and checking for various coding style violations. Moreover, all the
analysis are formulated within a framework that is independent
of the language under analysis. More details can be found in the
master thesis of the first author [4].

7. Experimental results
We have applied our tool to four collections of PHP programs,
written by people of varying proficiency. We first describe the
various sets of test programs, and then discuss the results (i.e.
the total number of warnings generated) and the validity of these
numbers.

We have tested our analyses on the following sets of programs
(see Figure 7 for some statistics for each of the cases):

Case 1 A small practical assignment for PHP programmers of an
Internet Programming course. This was the first assignment of
this course, and no experience with PHP was expected of these
students. The assignments of approximately 30 groups have
been analysed.

Analysis / warning Case 1 Case 2 Case 3 Case 4
TYPE_INFERENCE 1880 213 190 984

TYPE_CHANGE 208 0 15 40
COERCION_TO_ARRAY 403 0 20 125
MULTI_TYPE_VAR 51 0 11 31
TYPE_CHANGE_ANY 42 3 0 24
FUNCTION_ANY_RESULT 23 0 1 12
FUNCTION_MULTI_TYPE 18 0 0 0
COERCION_BOOL_NUM 4 0 0 0
NEW_VARIABLE 820 173 82 504
TYPE_MULTI_CHANGE 50 19 0 23
COERCION_NUM 133 0 7 103
COERCION_BOOL 78 37 18 2
COERCION_STRING_NUM 68 0 17 120

Figure 8. For each test case, the numbers of warnings for each
analysis specified by kind

Case 2 A larger practical assignment, which was the final program-
ming exercise from an earlier incarnation of this Internet Pro-
gramming course. We only consider one submission of this as-
signment, due to the large number of submissions making use
of classes in PHP.

Case 3 A larger practical assignment, which was the final assign-
ment of the Internet Programming course of Case 1. We con-
sider multiple submissions here, of approximately six groups,
although not all files of these groups could be parsed.

Case 4 A large site for news articles and polls, using a content
management system to manipulate the site. This site has been in
use for some time and was written by the author of this thesis.

In Figure 8 the test results for these analyses on our test cases
are displayed.

It appears that the final practical assignments (Cases 2 and 3)
generate fewer warnings on average than the first one (Case 1). This
may be due to the relative inexperience with programming PHP at
that point.

There are some interesting cases that seem rather inaccurate or
differ a lot from the other numbers. Consider the NEW_VARIABLE
warning type, which indicates undefined variables or variables of
which the initial type cannot be determined. Inspection of the
source code shows that these occur mainly when a web input (or
session) variable is assigned to a PHP variable. Since the external
values are of type any, this leads to propagation of unknown
type information.. Explicit coercions easily solve this problem, for
example:

$num_rows = mysql_num_rows($result);
$num_fields = mysql_num_fields($result);
$row = mysql_fetch_assoc($result);

if ($num_rows) {
...
for ($i=0; $i<$num_rows; $i++) {

reset($row);
...
$sprice = querySpecialPrice($row[product_id]);
if($sprice == -1) {
...

}
else {

$row[price] = $sprice;
print "<tr class=\"specialprice\">";

}



print ’<td><a href="product.php?id=’ .
$row[product_id] . ’">’ . $row[name] .
’</a> </td>’;

print makePriceTD($row[price]);
...

}
...

Because the type of $row is array[any] (which is the standard
type that the function mysql_fetch_assoc returns), the type of
the elements of this array is any. When an element of this array
would propagate through the program, then these are also assigned
type any, which leads to a warning such as:

case3/FrontOffice/productlistingfunctions.inc:10:
Class: FP:TYPE_INFERENCE - NEW_VARIABLE
Message: Non-concrete type assigned to variable

$priceInt
Found: $priceInt=[any]

An explicit coercion (int)$row[product_id] in the call to
querySpecialPrice would solve the problem. Other type prob-
lems such as these can be solved similarly. It should be noted that
adding explicit casts forces the programmer to think of the type of
the value he expects to obtain. Moreover, the explicit type cast also
serves to document his expectation explicitly.

A similar problem can be found in the warnings for array coer-
cions. These nearly all occur for variables to which the any type
is assigned, but which are meant to be used as arrays. This can
e.g. happen when an array value is stored in the $_SESSION super-
global, which has the default element type any.

An example of coercions that are detected well are the string to
numeric coercions, of the COERCION_STRING_NUM warning type.
For example:

$record_posts = mysql_fetch_array($result_posts);
$num_posts = $record_posts[’num_posts’];
...
if ($num_posts > 0)
{
...
}

In this example the $num_posts variable is assigned type
string, because the $record_posts variable is of type array[string],
which is the return type of the mysql_fetch_array function. But
in the if statement, it is compared to a number. The warning that
is generated by this example is:

case1/phpmysql_functions.inc:305:
Class: FP:TYPE_INFERENCE - COERCION_STRING_NUM
Message: string to numerical coercion for

variable $num_posts
Expected: $num_posts=[num]
Found: $num_posts=[string]

A simple explicit coercion to int at the assignment of $num_posts
solves this problem.

In the output we tend to obtain quite a few falsely nega-
tive FUNCTION_ANY_RESULT type warnings. These are nearly all
caused by library functions for which the argument types did not
match the ones given by the list of predefined functions (discussed
in Section 6), which leads to this warning. For example:

case3/site/footer.php:26:
Class: FP:TYPE_INFERENCE - FUNCTION_ANY_RESULT
Message: Cannot determine a concrete result type

for function strcmp with argument types

[[any], [string]]
Found: strcmp=[[[any], [string]] => [any]]

By default, the strcmp function expects two string arguments
(and compares them), and yields an int as result. However, if one
the arguments is not of string type, then the result type can not be
properly determined, thus yielding the any type as result.

One way to solve this problem is by adding the missing combi-
nations of types to the function list, or allowing the any type to be
used for every argument of a function call. However, this could lead
to accurate warnings of this type to remain undetected, and makes
determining the correct result type for specific argument types hard
or impossible.

Type changes of a variable are detected well, as demonstrated
by the following example:

$internal = $_POST[’internalnew’];
...
if($internal)
$internal = 1;

else
$internal = 0;

The type of $_POST is array[string], so its element type is
string. Therefore, $internal is also assigned type string. How-
ever, in the conditional statement, the type of $internal is
changed to int in both branches, leading to a TYPE_CHANGE
warning after the execution of either branch. If either branch
did not change the type (or changed it to even another type,
such as bool), then a different warning would be given, namely
TYPE_MULTI_CHANGE. Another warning generated by this sin-
gle example is the COERCION_BOOL warning, because the string
$internal is used in the boolean condition.

The MULTI_TYPE_VAR warning occurs when the type of a vari-
able is initialized as a multi-type. For example:

function getReply($post_id) {
global $connection;

$query = sprintf("SELECT post_id FROM posts \
WHERE reply_id=’%d’", $post_id);

$result = mysql_query($query, $connection);
if ($result) {

$post = mysql_fetch_array($result);
return $post["post_id"];

} else {
return -1;

}
}

This leads to warning messages such as:

case1/topicdetail.php:23:
Class: FP:TYPE_INFERENCE - MULTI_TYPE_VAR
Message: Multiple possible types found for

variable $post_id
Found: $post_id=[num, string]

Finding out the exact cause of messages such as these that are
caused by this example can be very tricky, especially if function pa-
rameters have multiple types. Therefore, programmers should take
extra care in determining the result types of their functions. The
FUNCTION_MULTI_TYPE warning that this example also throws, is
a good indication that something is not right. In the above example,
the function can return both an integer or a string as result, making
its result type {string, int}.

In general, the type inference algorithm performs quite well.
Still, there is enough space for improvement, especially on the de-



tection of any type assignments to variables. Often these come from
web input variables or session variables, and if more information
could be provided here, the analysis could become more accurate.
Another issue for improvement is in the handling of library func-
tions, especially if for their arguments no appropriate result type
can be found. The amount of false positives of our algorithm seems
rather low (and falls within our expectations).

8. Related work
Although we are not aware of work in soft typing specifically for
PHP, many other dynamically typed languages have been consid-
ered for soft typing.

For Scheme a soft typing system called Soft Scheme [15]
has been developed. This system is modeled after the work of
Cartwright and Fagan [6], which is basically the Hindley-Milner
system extended with union types and recursive types. It uses an ef-
ficient representation for types, integrates polymorphism smoothly
with union types, and its run-time check insertion algorithm is
more efficient, and inserts fewer checks. Also, some issues that
Cartwright and Fagan ignored, such as uncurried procedures and
assignments, have been addressed in Soft Scheme, making it a
more practical and useful system. Soft Scheme performs global
type checking for R4RS Scheme [1] programs, and prints a list of
the inserted run-time checks, after which the programmer can then
inspect type information.

For Perl a static type inference system [11] has been developed.
Because no formal grammar for Perl exists, aside from its imple-
mentation, the type checker uses the compiler back-end of Perl to
type check the variables and operators from the opcode tree which
is generated. No actual Perl source code is considered. The type
system is a static type inference system which uses a unification
algorithm similar to the one used by Damas and Milner [9]. A soft
typing system with union types like described in [2, 6] might have
been considered here, but instead, they opted for a solution [11]
where type variables can be entered in certain places, so that things
like unqualified numbers, generic scalars, and references to any-
thing can be expressed without the need for expensive union types.
This however resulted in a type language which seems a lot more
complicated than usual. On the other hand, the added flexibility is
expressive enough to yield the same results as union types would
give, and is also more efficient.

For Python, several soft typing systems have been developed.
We discuss two important ones. Iterative type analysis [7] infers
the type of the body of methods, in three steps, by building a
constraint graph. First, the variables are allocated, and form the
nodes of the graph, and are of monomorphic type (polymorphism
of variables is found through the iterations during the analysis).
Next, the variables are seeded with their initial types, or a base type
if no initial type can be determined. Lastly, constraints are created
by drawing edges between the nodes and the operations on them.
Iterative type analysis uses control-flow analysis to determine the
types of variables, so that accurate types are determined at every
specific point of execution in the program. Another type system
described in [7], called Cartesian Product, performs type inference
in a similar way, but on method calls instead. The algorithm is able
to handle all possible flow constructs, and is flow-sensitive. This
means that the inferred type of a variable may change as control
flow is followed to a more restrictive type. Some situations however
may require flow-insensitivity, which is supported as well. A full
description of the algorithm can be found in Section 5 of [5].

Aggressive type inference [3] makes use of the idea that not all
programs in a dynamically-typed language need dynamic typing.
Aggressive type inference ignores control flow; this means that at
a specific flow construct, e.g. a if-then-else statement, the union of
the result types of both blocks will be taken. The other rule is type

consistency within a scope, which means that given a variable x
with a type T at some point within the scope, it will have this type
(or union) within the entire scope. Unfortunately, these two rules
are not sufficient to infer types for some programs. Aggressive type
inference however can be used in conjunction with other sources
of type information, such as a list of predetermined types for some
functions, so it can become more effective. Due to the fact that it
does not recognize different types for a given variable at different
program points, aggressive type inference is not as accurate as our
approach when it comes to local variables.

9. Conclusions and future work
We have described a system that applies soft typing to PHP. The
goal of the system is to deliver a list of warnings, each accompanied
by a priority that indicates the seriousness of the problem. The
system is not supposed to be sound or complete, both false negative
and false positives may occur. To deal with false negatives, we have
added a facility for suppressing warnings.

An obvious extension of our work is to incorporate the missing
parts of PHP (and maybe even later versions of the language). It is
quite possible that the addition of classes, incurs a large penalty on
the run-time of analyses, so it may be necessary to improve the
efficiency of the implementation. This may either be by careful
programming, by restricting context further, or the optimization
discussed below. A second useful addition is to implement a full
definite assignment analysis to track down the missing undefined
variables such as $cnt in Section 3. Another extension would be
to perform an additional check on type casts, to find out whether
the same variable is explicitly cast to two different types.

In the opposite direction, we would be interested to compare
our current version with a variant in which global variables are
analysed with some measure of context. An additional benefit of
this more uniform treatment of global and local variables is that the
workflow algorithm does not need to explicitly distinguish between
them. The algorithm will therefore become much simpler. We do
believe however, that the run-time penalty will be quite large.

A characteristic of our worklist algorithm is that it if the anal-
ysis result for a particular context value changes, then the anal-
ysis results for all context values will be repropagated. This can
be avoided by annotating each value for a particular context value
with a change bit, so that we propagate only those values that have
actually changed. We did not implement this, because increased ef-
ficiency is currently not important. However, such an optimization
might allow using more context information and potentially higher
precision, and allow us to deal with classes effectively.
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