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Abstract
Pure functional programming languages preclude destructive up-
dates of heap-allocated data. In such languages, all newly com-
puted algebraic values claim freshly allocated heap space, which
typically causes idiomatic programs to be notoriously inefficient
when compared to their imperative and impure counterparts. We
partly overcome this shortcoming by considering a syntactically
light language construct for enabling user-controlled in-place up-
dates of algebraic values. The resulting calculus, that is based on
a combination of type-based uniqueness and constructor analysis,
is guaranteed to maintain referential transparency and is fully com-
patible with existing run-time systems for nonstrict, pure functional
languages.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis

General Terms Languages, Theory

Keywords compile-time garbage collection, lazy functional pro-
gramming, type-based program analysis

1. Introduction
Functional programming languages can be classified along several
axes: we can distinguish between pure and impure langauges as
well as between langauges with strict and nonstrict semantics. In
practice, not all combinations make sense. Nonstrict languages
better be pure, because reasoning about unrestricted side-effects
becomes more complicated when the order of evaluation gets less
predictable.

Purity has some clear advantages. For example, it enables equa-
tional reasoning and it opens the road to memoization, common
subexpression elimination, and parallel evaluation strategies. The
driving force that enables these opportunities is referential trans-
parency: in a pure language, each of a program’s terms can, at any
time, be replaced by its value without changing the meaning of the
program as a whole.

Referential transparency can only be achieved if side-effects are
excluded from the language—or at least dealt with in some special
way. In the language Haskell [18], for instance, all potentially side-
effecting computations are encapsulated in a monad [20]. Unfortu-
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nately, a monadic programming style typically differs fundamen-
tally from an ordinary functional style. While this is not as much
of a problem if the programming task at hand is side-effecting by
nature, it becomes an issue when side effects are only involved pe-
ripherally: then, a programmer will be keen to maintain a functional
look and feel to the program and not have encapsulation of side ef-
fects dominate the overall style of the program.

Consider, for example, in-place updates of data structures.
Overwriting arbitrary values in memory is a definite threat to
referential transparency and, in a pure language, will have to
be dealt with carefully. If in-place updates are a key ingredi-
ent of an algorithm—as they are, for instance, of the union-find
algorithm—it makes good sense to make them available in a con-
trolled, monadic setting (see, for instance, Launchbury and Peyton
Jones [16]) and have the programmer write down the algorithm in
monadic style. However, if a single in-place update is only needed
for some localized performance tuning to an otherwise completely
functional snippet of code, we really want to provide the program-
mer with an opportunity to add the performance tweak without
being forced to abandon a purely functional style of coding. In
order to keep the advantages of such a style, the compiler then
has to make sure that the tweak does not compromise referential
transparency.

To this end, we present a small and syntactically light language
construct that indeed enables programmers to incorporate in-place
updates of data structures in idiomatic functional programs. Specif-
ically, our contributions are the following:

• We embed a destructive assignment operator in a purely func-
tional expression language in order to provide some lightweight
support for compile-time garbage collection. Judicious use of
the operator enables the programmer to take explicit control
over the reuse of heap cells that are already allocated but, prov-
ably, no longer in use. We illustrate and motivate its use by
means of some concrete examples (Section 2).
• A formal account of the proposed construct is given in terms

of a dynamic and a static semantics for a small higher-order
let-polymorphic call-by-need lambda-calculus with lists (Sec-
tion 4). The dynamic semantics are designed to be compati-
ble with existing memory models for lazy functional languages,
while the static semantics rely on a combination of type-based
usage analysis and constructor analysis (Section 3).
• We briefly discuss some of the design space around our pro-

posal and sketch some variations on our approach (Section 5).

2. Motivation
Before we delve into the more technical aspects of our proposal, let
us first motivate and demonstrate our approach by means of some
examples.
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2.1 List Reversal
Consider the standard Haskell program for list reversal:

reverse l = rev l [ ]
where

rev [ ] acc = acc
rev (x : xs) acc = rev xs (x : acc).

The definition of the function reverse makes use of a so-called
accumulating parameter [2]. The locally defined helper function
rev traverses the spine of the input list l and constructs a fully new
spine for the result list. A potential source of inefficiency lies in the
fact that, in typical implementations of lazy functional languages,
a fresh heap cell is allocated for each element in the reversed list.
However, in situations in which the input to reverse is known to be
used only once, as, for example, in the following program,

main = do
input← readFile "in"

acc "out" (reverse input),

we know that each time rev needs to construct a cons-node, an
already allocated heap cell has just become available for reuse: the
cell in which the cons-node that we pattern matched against was
stored.

Therefore, we propose a small syntactic extension to lazy func-
tional languages like Haskell that allows programmers to take ad-
vantage of this knowledge and explicitly recycle available heap
cells. With this extension, an in-place version of reverse is

reverse• l = rev l [ ]
where

rev [ ] acc = acc
rev l@(x : xs) acc = rev xs l@(x : acc).

Here, we have used a conjunctive pattern l@(x : xs) in the cons-
case of the helper function: in Haskell, such a pattern provides the
programmer with a means to associate a name with a value that
is succesfully matched against a specific pattern. Our extension
amounts to also allowing the @-construct at the right-hand side of
function definitions. There, a term of the form x@e, where x is a
variable and e a constructor expression, denotes that the heap cell
in which the value associated with x is stored is to be overwritten
with the result of e. So, in our example, in the second case of
rev, we have indicated that the memory occupied by the top-level
constructor of (x : xs) is to be reused in the construction of (x : acc).

In our proposal, we expect the compiler to ensure referen-
tial transparency and, hence, a program that uses a function like
reverse• may fail to compile. Effectively, this means that, by de-
fault, explicit overwrites of heap cells are prohibited, unless we can
be absolutely certain that the overwritten heap cells do not store
data that is still in use. In the main program above, this is indeed
the case: reverse has private access to the list input and so it is
safe to replace the call to reverse by a call to reverse•. Determin-
ing whether or not a value can still be in use is a delicate task that
should therefore be handled by the compiler rather than the pro-
grammer (see Sections 3 and 4).

2.2 Sorting
As a second example, we look at a program in which the declara-
tive beauty of functional languages is nicely manifested: the well-
known quicksort algorithm.

qsort [ ] = [ ]
qsort (x : xs) =

qsort (filter (<x) xs) ++ [x ] ++ qsort (filter (> x) xs)

Although this version of quicksort has some obvious notational
advantages over an imperative implementation in, say, C, there are

also a few major disadvantages. Unsurprisingly, these have to do
with the fact that the efficiency of the above implementation is way
behind that of an in-place C-implementation.

Even so, the execution time of the functional version can be
improved easily by avoiding the two separate list traversals and
instead using a single function for breaking up the list in two parts.
Such a function takes a pivot k and a list l, and splits l into two
sublists: one with elements smaller than k and one with elements at
least k.

split• k l = pivot l [ ] [ ]
where

pivot [ ] accl accr = (accl, accr)
pivot l@(x : xs) accl accr
| x < k = pivot xs l@(x : accl) accr
| otherwise = pivot xs accl l@(x : accr)

qsort• l@[ ] = l
qsort• l@(x : xs) = qsort• left ++• l@(x : qsort• right)

where
(left, right) = split• x xs.

Except for the update markers at the right-hand sides of the def-
initions, this is just an idiomatic functional program. The update
markers are there to enforce that qsort• operates in-place, allocat-
ing only a constant amount of fresh heap space. Referential trans-
parency is guaranteed under the provision that, after sorting, the
input list is no longer used.

The presented example makes use of an append operator that
destructively reuses its first argument:

[ ] ++• ll = ll
lr@(x : xs) ++• ll = lr@(x : (xs ++• ll)).

2.3 Rotations in Binary Search Trees
In the construction of efficient search-tree representations, such as
AVL-trees and red-black trees [5], invariants are often maintained
with help of rotations. Using update markers, a functional imple-
mentation of in-place left rotations for binary search trees,

data Tree a = Leaf | Node (Tree a) a (Tree a),

can be written as follows:

rotate• t@Leaf = t
rotate• t@(Node l x r) = rot r

where
rot Leaf = t
rot r@(Node lr y rr) = r@(Node t@(Node l x lr) y rr).

In the second case, r is the right child of the input node t, with lr
the left child of r. In the rotated tree, t is the left child of r and lr
the right child of t, and so the search-tree property is retained.

In an imperative setting, rotations in binary search trees typi-
cally amount to redirecting two pointers—and, effectively, this is
just what happens in the snippet above.

3. Approach
In the previous section, we have presented some examples that
illustrate how update markers can be used for deriving destructive,
space-efficient versions of idiomatic functional programs. In this
section, we switch from the programmer’s perspective on explicit
heap-recycling annotations to that of the language designer.

In particular, we provide answers to two important questions
that arise when one considers adding programmer-controlled de-
structive updates to a lazy language:

190



1. How do we ensure that destructive updates do not compromise
referential transparancy? and

2. How do we ensure that destructive updates make sense with
respect to the underlying memory model?

It turns out that both issues can be resolved by putting restrictions
on the programs in which update markers occur. In our proposal,
these restrictions are enforced statically: the compiler rejects pro-
grams that do not satisfy the imposed constraints.

3.1 Maintaining Referential Transparency
Our main motivation for proposing explicit update markers for pure
functional languges was our desire to write idiomatic functional
code even in the presence of destructive updates. In a lazy setting,
besides retaining a functional style of programming, we also want
to keep referential transparency, so that reasoning about programs
remains manageable.

Obviously, maintaining referential transparency in the presence
of destructive updates is far from trivial. Consider, for example, the
following program:

let l = [1 . . 10]
in filter odd l ++ filter even l.

One would expect it to produce the list [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]—
and so it does. However, if we replace the calls to the standard filter
function by calls to a version that reuses parts of the spine of its
input list to produce its output,

filter• p l@[ ] = l
filter• p l@(x : xs) | p x = l@(x : filter• p xs)

| otherwise = filter• p xs,

we actually end up with the list [1, 3, 5, 7, 9], because the second
invocation of filter• is then bound to traverse a list that contains
nothing but odd numbers. In general, such referential opaqueness
renders reasoning about programs a tedious undertaking.

So, to be able to use update markers without giving up refer-
ential transparency, we have to come up with a means to exclude
programs like the one described above. In our approach, we do so
by only allowing destructive updates to be performed on values that
flow through a program in a single-threaded fashion. In the expres-
sion filter• odd l++filter• even l, for example, the value associated
with l branches over the operands of (++) and, hence, does not flow
single-threadedly.

To keep track of single-threadedness, we subject programs to
uniqueness analysis [1, 9]. To this end, we adopt a static typing
discipline in which we annotate the typing judgements for each
term with so-called uniqueness annotations. Such an annotation is
either 1, to indicate that a term is used single-threadedly, or ω,
to indicate that a term may flow multi-threadedly. For instance, a
possible typing judgement for the list l from the example above
may then read

Γ ` l :ω List Intω.

Here, the annotations on the copula and on the type constructor Int
indicate that, respectively, the spine of the list l and its elements
may be used multi-threadedly. Since the function filter• performs a
destructive update on the spine of its argument list, the typing of l
is not compatible with any valid typing of filter• even. An example
of such a typing for filter• even is

Γ ` filter• even :ω (List Intω)1 ω→ (List Intω)ω.

The restrictive nature of filter• even is expressed by the 1-
annotation on its domain: this annotation indicates that the function
can only consume arguments that are guaranteed to be used single-
threadedly. The ω-annotations in the typing of filter• even express

that the function itself may be passed around multi-threadedly (the
annotation on the copula), that the elements of both the argument
and the result list may be passed around multi-threadedly (the an-
notations on the occurrences of the type constructor Int), that the
result list may be passed around multi-threadedly (the annotation
on the codomain), and that use of the function is not subjected to
any containment restriction (the annotation on the function-space
constructor; see Section 4.3 for a discussion of containment).

3.2 Fitting the Memory Model
Now that we have ensured that updates do not destruct values that
are still in use, we have to consider how to determine whether or not
a programmer-proposed update can actually be performed within
the boundaries of the underlying memory model.

What happens for example, for lists, if we try to update a nil-cell
with a cons-cell? A common in-memory representation for values
of algebraic data types consists of (a pointer to) some constructor-
related information followed by a vector of pointers that refer to the
representations of the constructor arguments. But then, overwriting
a nil-cell with a cons-cell is problematic, because the amount of
space reserved for a nil-cell (a single pointer) is not enough to
contain a cons-cell (three pointers).

It should be noted that some memory models, most notably the
model that is used by the GRIN-system [4, 3], actually do allow
cells to be updated with values that require more space than the
original cell. This typically amounts to splitting the new cell in two
parts and having the last word of the first part point to the first word
of the second part. However, using such a scheme for destructive
updates in our situation defeats, to a large extent, its purpose for it
still requires us to allocate fresh heap space for the second part of
the cell.

The other way around, updating a larger cell with a smaller cell,
could also be troublesome. Such an update would leave the last
part of the original cell, i.e., the part that is not used by the re-
placing cell, as garbage. To reclaim this superfluous space, special
arrangements have to be made by an automatic garbage collector
and each cell then needs to store, in addition to the constructor in-
formation and pointers to its arguments, the total number of un-
used memory words that it has trailing. But this per-cell overhead
would inevitably have a dramatic negative impact on the overall
space consumption of programs!

These observations lead us to only considering updates that
involve equally sized cells—a restriction we already conformed to
in the examples from Section 2. In fact, we adopt an even more
restrictive scheme: we only allow values of algebraic data types to
be updated by values that were built by the same constructor as
the original value. We believe this is the most transparent scheme;
possible relaxations are discussed in Section 5.

To be able to enforce the described discipline, we need the
compiler to flag updates that involve different constructors invalid.
Now, approximately determining at compile time by which con-
structor a potential data value will have been built, is relatively easy
and amounts to some straightforward data-flow analysis. Again, we
choose a type-based approach.

In the following definition, for instance,

rev [ ] acc = acc
rev l@(x : xs) acc = rev xs l@(x : acc),

uniqueness analysis requires arguments that are bound to the pa-
rameter l to be used single-threadedly (cf. Section 3.1):

Γ ` l :1 ∀a. List aω.

In addition, for the second case, our data-flow analysis determines
that the only values for l that can flow into the right-hand side
are those that are constructed with the cons-constructor (:). This
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Identifiers
x ∈ Var (term variables)
α ∈ TyVar (type variables)
β ∈ AnnVar (annotation variables)
h ∈ Loc (heap locations)

Terms
a ∈ Atm := x | x@Nil | x@(Cons x x)
t ∈ Tm := a | λx. t | t a | let x = t in t

| Nil | Cons x x
| case x of {Nil⇒ t; Cons x x⇒ t}

Types
ϕ ∈ UnqAnn := 1 | ω | β
ψ ∈ ConAnn := ε | Nil | Cons
π ∈ Qual := ϕ v ϕ
τ ∈ Ty := α | τϕ ϕ→ τϕ | List τϕ

ρ ∈ QTy := τ | π ⇒ ρ
σ ∈ TyScheme := ρ | ∀α. σ | ∀β. σ
Γ ∈ Ctx := ∅ | Γ, x :ϕ|ψ σ | Γ, π

Evaluation
w ∈Whnf := Nil | Cons x x | λx. t
H ∈ Hp := ∅ | H, h 7→ (t; η) | H, h 7→ h
η ∈ Env := ∅ | η, x 7→ h

Figure 1. Syntax

information is stored in the context Γ, where we replace the binding
for l by a binding that is annotated with information about the
constructor:

l :1|(:) ∀a. List aω.

Then, at the update site l@(x : xs), all information that is needed to
flag this particular use of the update marker correct is available in
the context.

A more formal account of both our uniqueness analysis and our
constructor analysis is given in the next section.

4. Formalities
To formalize our approach, we present a small higher-order let-
polymorphic call-by-need lambda-calculus with lists and explicit
update markers. We proceed by discussing its abstract syntax (Sec-
tion 4.1), and its dynamic and static semantics (Sections 4.2 and
4.3, respectively). In Section 4.4, we list some properties of the
calculus.

4.1 Syntax
The abstract syntax of our calculus is given in Figure 1.

Assuming an infinite supply of identifier symbols, terms are
built from variables, updates, lambda-abstractions, function appli-
cations, local definitions, constructor expressions, and case anal-
yses. Constructors can only be applied to variables, while func-
tions applications are restricted to atomic argument terms. Such an
atomic term is either a variable or an update. (These syntactic re-
strictions merely facilitate the definition of a relatively straightfor-
ward dynamic semantics and are by no means essential: construc-
tor applications with nonvariable arguments and function applica-
tions with nonatomic arguments are easily desugared into terms
that meet the restrictions. To do so, one simply introduces fresh
let-bindings for the noncompliant arguments.)

We use the notation fv(t) to refer to the set of variables that ap-
pear free in t. As always, we assume substitution of free variables to
be capture avoiding, performing alpha-renaming when necessary.

In the type language, types are constructed from type variables,
function types, and list types. Types are annotated with uniqueness
anotations ϕ. A uniqueness anotation is either one of the constants
1 and ω, or an annotation variable β. We impose a total order on
uniqueness annotations, characterized by 1 @ ω. During typing, the
order between annotations is captured in qualifiers [13] of the form
ϕ1 v ϕ2. These qualifiers can be stored in type schemes, which are
obtained by quantifying over type and annotation variables. Typ-
ing contexts are formed by bindings for variables and by qualifiers.
Bindings for variables are annotated with both a uniqueness anno-
tation and a constructor annotation: x :ϕ|ψ σ. A constructor anno-
tation is either one of the constructors Nil and Cons or a special
constant ε that denotes the absence of information. We write Γ \ x
for the context obtained by removing all bindings for x from Γ.

The set of free type variables in a context Γ is written as
ftv(Γ). Likewise, the set of free annotation variables in Γ is written
as fav(Γ). Occasionally, contexts are treated as finite maps from
variables to types schemes and annotation pairs, and we write Γ(x)
for the type scheme and annotation pair that are associated with the
rightmost binding for x in Γ.

In our dynamic semantics, heaps are modelled as bindings of
heap locations h to either closures or other heap locations. The lat-
ter type of binding is referred to as an indirection. Closures con-
sist of a term and an environment, while environments bind vari-
able names to heap locations. During evaluation, terms reduce to
weak-head normal forms, which are either constructor applications
or lambda-abstractions.

We write H(h) for the closure or location that is associated with
the rightmost binding for h in the heap H and, similarly, we let η(x)
denote the location that is associated with the rightmost occurrence
of x in the environment η. Additionally, each heap H gives rise to a
metafunction H :Loc→ Loc that “traverses” chains of indirections
until it hits a closure:

H(h) =


h if H(h) = (t; η),
H(h′) if H(h) = h′.

4.2 Dynamic Semantics
The dynamic semantics of our calculus is given as a Launchbury-
style natural semantics for call-by-need evaluation [15]. The main
departure from Launchbury’s approach is that we model variable
binding by means of an explicit mapping from names to locations,
whereas in Launchbury’s formulation, variables and memory loca-
tions coincide. Because, in our system, updateable structures are
identified by names, we believe our technique is more convenient
in the present setting as it explicates name management.

The semantics is presented in Figures 2 and 3 as a deduction
system with judgements of the form

H; η; t ⇓n H′; η′; w.

The semantics is instrumented in the sense that it associates with
each judgement of the evaluation relation a natural number n that
indicates how many fresh heap locations are required by the evalu-
ation.

The result of evaluating a term t in the context of a heap H and
an environment η, is captured by a triple consisting of an updated
heap H′, an updated environment η′, and a weak-head normal form
w. The rules of the evaluation relation maintain the invariant that
heap indirections never point to other indirections, i.e., the size
of any chain of indirections is at most 1. Moreover, indirections
always point to closures that contain weak-head normal forms.

Lambda-abstractions and saturated constructor applications are
already in weak-head normal form and, hence, require no further
evaluation. This is expressed by the rules E-ABS, E-NIL, and E-
CONS in Figure 2.
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Evaluation H; η; t ⇓n H′; η′; w

H; η; λx. t1 ⇓0 H; η; λx. t1 (E-ABS)

H; η; Nil ⇓0 H; η; Nil (E-NIL)

H; η; Cons x1 x2 ⇓0 H; η; Cons x1 x2 (E-CONS)

η(x) = h
H(h) = (t′′; η′′) t′′ /∈ Atm− Var

H; η′′; t′′ ⇓n H′′; η′; w h′ /∈ dom(H)
H′ = H′′, h′ 7→ (w; η′), h 7→ h′

H; η; x ⇓n+1 H′; η′; w
(E-VARCLOSE)

η(x) = h H(h) = h′ H(h′) = (w; η′)

H; η; x ⇓0 H; η′; w
(E-VARIND)

H; η; t1 ⇓n1 H′′; η′′; λx′′. t′′ η(x) = h
H′′; η′′, x′′ 7→ h; t′′ ⇓n2 H′; η′; w

H; η; t1 x ⇓n1+n2 H′; η′; w
(E-APPVAR)

h /∈ dom(H) η′′ = η, x 7→ h
H, h 7→ (t1; η

′′); η′′; t2 ⇓n0 H′; η′; w
H; η; let x = t1 in t2 ⇓n0+1 H′; η′; w

(E-LET)

H; η; x ⇓n1 H′′; η′′; Nil H′′; η′′; t1 ⇓n2 H′; η′; w
H; η; case x of {Nil⇒ t1; Cons x1 x2 ⇒ t2} ⇓n1+n2 H′; η′; w

(E-CASENIL)

H; η; x ⇓n1 H′′; η′′1 ; Cons x′′1 x′′2
η′′ = η′′1 , x1 7→ η′′1 (x′′1 ), x2 7→ η′′1 (x′′2 )

H′′; η′′; t2 ⇓n2 H′; η′; w
H; η; case x of {Nil⇒ t1; Cons x1 x2 ⇒ t2} ⇓n1+n2 H′; η′; w

(E-CASECONS)

Figure 2. Instrumented natural semantics

Evaluation (updates) H; η; t ⇓n H′; η′; w

η(x) = h H(h) = (x′@Nil; η′)
η(x′) = h′ H(h′) = (Nil, η′′)
H′ = H, h′ 7→ (Nil, η′), h 7→ h′

H; η; x ⇓0 H′; η′; Nil
(E-VARNIL)

η(x) = h H(h) = (x′@(Cons x′1 x′2); η
′)

η(x′) = h′ H(h′) = (Cons x′′1 x′′2 , η
′′)

H′ = H, h′ 7→ (Cons x′1 x′2; η
′), h 7→ h′

H; η; x ⇓0 H′; η′; Cons x′1 x′2
(E-VARCONS)

H′; η; x@Nil ⇓0 H′′; η′′; w′′

H′′; η; t1 x ⇓n H′; η′; w
H; η; t1 x@Nil ⇓n H′; η′; w

(E-APPNIL)

H′; η; x@(Cons x1 x2) ⇓0 H′′; η′′; w′′

H′′; η; t1 x ⇓n H′; η′; w
H; η; t1 x@(Cons x1 x2) ⇓n H′; η′; w

(E-APPCONS)

η(x) = h H(h) = h′

H(h′) = (Nil; η′′) H′ = H, h′ 7→ (Nil; η)

H; η; x@Nil ⇓0 H′; η; Nil
(E-UPDNIL)

η(x) = h H(h) = h′

H(h′) = (Cons x′′1 x′′2 ; η′′)
H′ = H, h′ 7→ (Cons x1 x2; η)

H; η; x@(Cons x1 x2) ⇓0 H′; η; Cons x1 x2
(E-UPDCONS)

Figure 3. Instrumented natural semantics (updates)

The rule E-VARCLOSE operates on variables that map to closures
that have no update marker at the top-level of their term component.
For these, a fresh heap location is allocated and the original closure
is updated with an indirection to the new cell in which the result of
evaluating the closure is stored. If a variable is associated with an
indirection (rule E-VARIND), the indirection is followed in order to
immediately obtain the appropriate weak-head normal form.

For function applications with a variable argument (rule E-
APPVAR), we first force the function component into a lambda-
form and then evaluate the body of the lambda-abstraction with
its parameter bound to the argument location.

The rule for local definitions (E-LET) allocates a new heap
location and binds it to a closure for the definition. The body of
the let-term is then evaluated in an extended environment.

In the rules for case analyses (E-CASENIL and E-CASECONS), the
scrutinee is forced to a constructor application, after which evalu-
ation proceeds with the appropriate right-hand side in a suitably
extended environment.

The evaluation rules in Figure 3 deal with explicit updates. In
the evaluation of variables that are associated with updates (rules
E-VARNIL and E-VARCONS), we perform the desired update and si-
multaneously place an indirection from the location of the original
closure to the updated heap binding.

Function applications to @-forms are handled by rules E-
APPNIL and E-APPCONS. These first perform the associated update
and then continue evaluation with the appropriate function applica-
tion.

Stand-alone updates, as in rules E-UPDNIL and E-UPDCONS,
evaluate to the contained constructor form, but, as side effect,
perform the indicated heap rewrite.

4.3 Static Semantics
Essentially, the static semantics of our calculus are a blend of our
earlier work on usage analysis [9] and a type-based approach to
constructor analysis.

The details of the analyses are presented in Figures 4 and 5,
where the judgements of the typing relation take the form

Γ ` t :ϕ σ,

indicating that within context Γ, the term t can be assigned the type
scheme σ and the uniqueness annotation ϕ.

The typing rules make use of a number of subsidiary judge-
ments. Context splitting, with judgements of the form

Γ = Γ1 ./Γ2,

is used for typing terms that introduce branches in a program’s
control-flow graph, such as applications and local definitions. The
idea is to split up all single-threaded variables that appear in the
context of such a term and to distribute them over the contexts that
are passed down to its children in the syntax tree. This way, we can
guarantee that all updateable values indeed flow single-threadedly.

We employ an entailment relation on qualifiers,

Γ 
 π,

that basically establishes that our order on uniqueness annotations
is indeed reflexive and transitive, and has 1 and ω as, respectively,
its least and greatest elements.

The typing rule for variables, T-VAR in Figure 4, expresses that
for typing variables we simply retrieve the type scheme, uniqueness
annotation, and constructor annotation for the variable from the
context and forget about the constructor annotation.

In the rule for lambda-abstractions, a subtlety arises. In princi-
ple, the uniqueness annotation for an abstraction is, besides by its
use in the program, restricted by the annotations for the variables
that appear free in its body: these impose a lower bound on the an-
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Context splitting Γ = Γ1 ./Γ2

∅ = ∅ ./ ∅ (C-EMPTY)

ϕ ∈ {β, 1} Γ1 = Γ11 ./Γ12

Γ1, x :ϕ|ψ σ = Γ11, x :ϕ|ψ σ ./Γ12 \ x
(C-VARONCE1)

ϕ ∈ {β, 1} Γ1 = Γ11 ./Γ12

Γ1, x :ϕ|ψ σ = Γ11 \ x ./Γ12, x :ϕ|ψ σ
(C-VARONCE2)

Γ1 = Γ11 ./Γ12

Γ1, x :ω|ψ σ = Γ11, x :ω|ψ σ ./Γ12, x :ω|ψ σ
(C-VARMANY)

Γ1 = Γ11 ./Γ12

Γ1, π = Γ11, π ./Γ12, π
(C-QUAL)

Entailment Γ 
 π

π ∈ Γ
Γ 
 π

(Q-MONO)

Γ 
 ϕ v ϕ (Q-REFL)

Γ 
 ϕ1 v ϕ2 Γ 
 ϕ2 v ϕ3

Γ 
 ϕ1 v ϕ3
(Q-TRANS)

Γ 
 1 v ϕ (Q-BOT)

Γ 
 ϕ v ω (Q-TOP)

Typing Γ ` t :ϕ σ

Γ(x) =ϕ|ψ σ
Γ ` x :ϕ σ

(T-VAR)

fv(t1)− {x} = {x1, ..., xn}
Γ(xi) =ϕxi |ψxi σxi

Γ 
 ϕ0 v ϕxi

ff
for each i ∈ {1, ..., n}

Γ, x :ϕ1|ε τ1 ` t1 :ϕ2 τ2

Γ ` λx. t1 :ϕ τϕ1
1

ϕ0→ τϕ2
2

(T-ABS)

Γ = Γ1 ./Γ2

Γ1 ` t1 :ϕ1 τϕ2
2

ϕ0→ τϕ Γ 
 ϕ1 v ϕ0
Γ2 ` x :ϕ2 τ2

Γ ` t1 x :ϕ τ
(T-APPVAR)

Γ = Γ1 ./Γ2 Γ1 ` t1 :ϕ1 σ1

Γ2, x :ϕ1|ε σ1 ` t2 :ϕ σ
Γ ` let x = t1 in t2 :ϕ σ

(T-LET)

Γ ` Nil :1 List τϕ1
1 (T-NIL)

Γ = Γ1 ./Γ2 Γ1 ` x1 :ϕ1 τ1
Γ2 ` x2 :ϕ List τϕ1

1 Γ 
 ϕ v ϕ1

Γ ` Cons x1 x2 :ϕ List τϕ1
1

(T-CONS)

Γ ` x :ϕ2 List τϕ1
1 Γ, x :ϕ2|Nil List τϕ1

1 ` t1 :ϕ σ

Γ, x :ϕ2|Cons List τϕ1
1 , x1 :ϕ1|ε τ1, x2 :ϕ2|ε List τϕ1

1 ` t2 :ϕ σ
Γ ` case x of {Nil⇒ t1; Cons x1 x2 ⇒ t2} :ϕ σ

(T-CASE)

Γ, π ` t :ϕ ρ1

Γ ` t :ϕ π ⇒ ρ1
(T-QUAL)

Γ ` t :ϕ π ⇒ ρ Γ 
 π
Γ ` t :ϕ ρ

(T-RES)

Γ ` t :ϕ σ1 α /∈ ftv(Γ)
Γ ` t :ϕ ∀α. σ1

(T-TYGEN)

Γ ` t :ϕ ∀α. σ1

Γ ` t :ϕ [α 7→ τ ]σ1
(T-TYINST)

Γ ` t :ϕ σ1 β /∈ fav(Γ)
Γ ` t :ϕ ∀β. σ1

(T-EFFGEN)

Γ ` t :ϕ ∀β. σ1

Γ ` t :ϕ [β 7→ ϕ0 ]σ1
(T-EFFINST)

Γ ` t :ϕ0 σ Γ ` ϕ0 v ϕ
Γ ` t :ϕ σ

(T-SUB)

Figure 4. Annotated type system

Typing (updates) Γ ` t :ϕ σ

Γ = Γ1 ./ (Γ21 ./Γ22)

Γ1 ` t1 :ϕ1 τϕ2
2

ϕ0→ τϕ Γ 
 ϕ1 v ϕ0

Γ21(x) =1|Nil σ0 Γ22 ` Nil :ϕ2 τ2

Γ ` t1 x@Nil :ϕ τ
(T-APPNIL)

Γ = Γ1 ./ (Γ21 ./Γ22)

Γ1 ` t1 :ϕ1 τϕ2
2

ϕ0→ τϕ Γ 
 ϕ1 v ϕ0

Γ21(x) =1|Cons σ0 Γ22 ` Cons x1 x2 :ϕ2 τ2

Γ ` t1 x@(Cons x1 x2) :ϕ τ
(T-APPCONS)

Γ = Γ1 ./Γ2

Γ1(x) =1|Nil σ0 Γ2 ` Nil :ϕ σ
Γ ` x@Nil :ϕ σ

(T-UPDNIL)

Γ = Γ1 ./Γ2

Γ1(x) =1|Cons σ0 Γ2 ` Cons x1 x2 :ϕ σ
Γ ` x@(Cons x1 x2) :ϕ σ

(T-UPDCONS)

Figure 5. Annotated type system (updates)
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Store typing H; η ` Γ

H; ∅ ` ∅ (S-EMPTY)

H; η1 ` Γ1 H(h) = (Nil; η′)
H; η′ ` Γ′ Γ′ ` Nil :ϕ σ

H; η1, x 7→ h ` Γ1, x :ϕ|Nil σ
(S-NIL)

H; η1 ` Γ1 H(h) = (Cons x1 x2; η
′)

H; η′ ` Γ′ Γ′ ` Cons x1 x2 :ϕ σ

H; η1, x 7→ h ` Γ1, x :ϕ|Cons σ
(S-CONS)

H; η1 ` Γ1 H(h) = (t; η′)
H; η′ ` Γ′ Γ′ ` t :ϕ σ

H; η1, x 7→ h ` Γ1, x :ϕ|ε σ
(S-CLOSE)

H(h) = h′ H; η1, x 7→ h′ ` Γ
H; η1, x 7→ h ` Γ

(S-IND)

Figure 6. Store typing

notation for the abstraction. This is an instance of a more general
scheme, that is referred to as the containment restriction: the anno-
tation for a structure containing elements should not be greater than
the annotation for any of its elements. It turns out that the contain-
ment restriction is essential to maintaining referential transparency
[1]. However, as we see in a moment, our system admits subeffect-
ing (cf. Hage et al. [9]) which basically allows uniqueness anno-
tations on typings to be enlarged in an arbitrarily fashion. Without
countermeasures this would allow bypassing the containment re-
striction and, effectively, destroying referential transparency. The
countermeasure we adopt here is due to De Vries et al. [7]: we
place an extra annotation ϕ0 on the function-space constructor that
stores an upper bound on the annotation for the lambda-abstraction.
Now, whenever a function is applied, as in rule T-APPVAR, we make
sure that the annotation for the function adheres to the upper bound
and, if so, proceed as usual.

In both rule T-ABS and rule T-LET, we set the constructor anno-
tation for new context bindings to ε, indicating that, at that point,
we do not have enough information to uniquely determine the in-
volved constructor.

The rules T-NIL and T-CONS deal with list construction. The in-
vocation of qualifier entailment in T-CONS is once again necessary
to meet the containment restriction.

In the rule for case analyses, the most important observation
to make is that the contexts that are passed down to the terms at
the right-hand sides of case-terms are refined to contain a more
informative constructor annotation for the scrutinee.

The rules T-QUAL and T-RES deal with introduction and elimi-
nation of qualifiers. Generalization and instantiation is handled by
the rules T-TYGEN, T-TYINST, T-EFFGEN, and T-EFFINST. Rule T-
SUB introduces subeffecting.

The typing of updates is defined by rules T-APPNIL, T-APPCONS,
T-UPDNIL, and T-UPDCONS in Figure 5. These rules ensure that the
value to be updated is guaranteed to be used single-threadedly and
is built with the right constructor.

4.4 Properties
Our static semantics is a conservative extension of the standard
Hindley-Milner type system [17], equipped with a principal-type
property. It admits a fully automatic type-reconstruction algorithm,
that can formulated as an extension of Algorithm W [6].

Soundness with respect to the natural semantics is established
by means of a subject-reduction result. To formulate this result, we
define a relation between stores (consisting of a heap and an envi-

ronment) and typing contexts. The relation is depicted in Figure 6
and has judgements of the form

H; η ` Γ.

Using this relation, our soundness result now reads:

Theorem 1 (Subject Reduction). If H; η; t ⇓n H′; η′; w with
H; η ` Γ and Γ ` t :ϕ σ, then there exists a context Γ′ such that
H′; η′ ` Γ′ and Γ′ ` w :ϕ σ. �

While soundness is of course a crucial property of our static
semantics, we also want to have made sure that adding validly
placed update markers does indeed improve the space efficiency of
terms. To this end, we first define the erasure btc of a term t. Erasure
amounts to removing all update markers from a term, introducing
fresh let-bindings to yield syntactically valid forms:

bxc = x
bλx. t1c = λx. bt1c
bt1 xc = bt1c x
blet x = t1 in t2c = let x = bt1c in bt2c
bNilc = Nil
bCons x1 x2c = Cons x1 x2

bcase x of {Nil⇒ t1; Cons x1 x2 ⇒ t2}c
= case x of {Nil⇒ bt1c; Cons x1 x2 ⇒ bt2c}

bt1 x@Nilc = let x0 = Nil in bt1c x0

where x0 is fresh
bt1 x@(Cons x1 x2)c = let x0 = Cons x1 x2 in bt1c x0

where x0 is fresh
bx@Nilc = Nil
bx@(Cons x1 x2)c = Cons x1 x2

Erasure extends naturally to terms contained in heap closures and
we write bHc for the heap that is obtained by applying erasure to
all closures in a heap H.

The following property of our system now expresses that validly
adding update markers to a markerless program does not change
the meaning of a program and, moreover, does not have a negative
impact on the program’s space behaviour:

Theorem 2. If H; η; t ⇓n1 H′; η′; w with H; η ` Γ and Γ ` t :ϕ

σ, then there exist H′′, η′′, and n2 with bHc; η; btc ⇓n2 H′′; η′′; w.
Moreover, for all such H′′, η′′, and n2, we have that n1 6 n2. �

5. Further Exploration
So far, we have focussed on a single fixed approach within the de-
sign space around our construct. There are, however, some obvious
directions for further investigation.

First of all, the reader may ask why we let the compiler check
whether update markers are placed correctly by the programmer
rather than take an unmarked source program and add update mark-
ers automatically. The answer is that we want to enable the pro-
grammer to use his knowledge of the program and express his in-
tuitions about possible optimisations. The checks performed by the
compiler then are a means of reassurance. If we were to rely on
automatic optimizations exclusively, we would be in awkward po-
sition if it turned out that the compiler, for some reason, was not
able to perform one or more of the optimizations we were expect-
ing. The only thing we could do then, is to try and find out whether
the optimizations could not be performed and rewrite the program
in such a way that the compiler can actually optimize it accord-
ing to our expectations, perhaps abandoning an idiomatic style of
programming. In contrast, in our approach, the programmer could
just leave the style of the program unchanged and add a marker to
trigger the optimization. So, we do regard our approach as an addi-
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tion to rather than a substitute for a system that decides on in-place
updating fully automatically.

Still, from a usability point of view, there are some issues that
need to be resolved. For instance, the type language of our calculus
is far too complex to be exposed to the programmer. Instead, we
envision that annotations in types are completely hidden from the
surface of the language. The programming environment then needs
to be equipped with other, demand-driven means to inform the
programmer about the uniqueness properties of her program.

Another point of concern in our system is the need for duplicat-
ing the definition of general-purpose functions such as reverse in
Section 2.1. A possible alleviation would be to have the unmarked
version of such a function be generated from the marked function
and to come up with syntax that allows the programmer to distin-
guish between calls to the two versions of the function.

In order to further investigate the design space, we would be in
favour of experimenting with our approach by incorporating it in a
real compiler for a large-scale programming language like Haskell.

6. Related Work
The Clean language [19] uses uniqueness typing [1] to maintain
referential transparency in the presence of side effects. Uniqueness
types are inferred as well as checked. The Clean compiler can, for
arbitrary algebraic values, use the results of uniqueness analysis
to emit code that performs destructive updates, but it only does so
within the context of a fully automatic program optimization. In
particular, Clean does not enable the programmer to explicitly write
down assignments. Still, the optimization has proven to be quite
effective, showing a dramatic, positive impact on both memory
and time consumption of programs. Interestingly, our approach is
complementary to Clean’s: in our system uniqueness types are not
visible to the programmer, but recycling is—while in Clean this is
just the other way around.

Other techniques for automatically inserting destructive assign-
ments into functional programs are proposed by Jones and Le
Métayer [14], and by Jensen and Mogensen [12]. Contrary to the
approach adopted in Clean and in the present paper, these anal-
yses are not type-based and instead formulated as abstract inter-
pretations of source programs. A more ad-hoc technique, targeted
at logic languages rather than functional languages, is given by
Gudjónsson and Winsborough [8].

Hofmann [10] shows how a linear typing discipline can be used
to keep track of sites at which functional programs can perform in-
place updates. Again, this analysis, which results in malloc-free
C-code, is completely shielded from the programmer. Furthermore,
the analysis is restricted to first-order programs, whereas ours is
also applicable to higher-order languages.

Hofmann and Jost [11] present an analysis that is capable of
statically establishing upper bounds for the memory usage of first-
order functional programs. Such an analysis seems particulary use-
ful within the context of embedded system that only have limited
resources. We expect that Hofmann and Jost’s analysis can easily be
adapted to cope with explicit update markers. Moreover, it would
be interesting to see whether our approach to uniqueness analysis
can be of any help in extending their analysis to higher-order pro-
grams.

7. Conclusion
We have presented a type-based approach to guaranteeing refer-
ential transparency in the presense of programmer-controlled de-
structive updates, that can be incorporated in compilers for lazy
functional languages. We believe that providing the programmer
with a lightweight means of tweaking programs for optimization is

a welcome addition to fully automatic optimizations that deserves
further exploration.
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