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Abstract. A generic function is defined by induction on the structure
of types. The structure of a data type can be defined in several ways. For
example, in PolyP a pattern functor gives the structure of a data type
viewed as a fixed point, and in Generic Haskell a structural representa-
tion type gives an isomorphic type view of a data type in terms of sums
of products. Depending on this generic view on the structure of data
types, some generic functions are easier, more difficult, or even impossi-
ble to define. Furthermore, the efficiency of some generic functions can
be improved by choosing a different view. This paper introduces generic
views on data types and shows why they are useful. Furthermore, it
shows how generic views have been added to Generic Haskell, an exten-
sion of the functional programming language Haskell that supports the
construction of generic functions. The separation between inductive def-
initions on type structure and generic views allows us to combine many
approaches to generic programming in a single framework.

1 Introduction

A generic function is defined by induction on the structure of types. Several
approaches to generic programming [1–5] have been developed in the last decade.
These approaches have their commonalities and differences:

– All the approaches provide either a facility for defining a function by induc-
tion on the structure of types, or a set of basic, compiler generated, generic
functions which are used as combinators in the construction of generic func-
tions. The compiler generated functions, however, are also defined by induc-
tion on the structure of types.

– All the approaches differ on how they view data types. There are various
ways in which the inductive structure of data types can be defined, and each
approach to generic programming chooses a different one.

This paper introduces generic views on data types. Using generic views it is pos-
sible to define generic functions for different views on data types. Generic views
provide a framework in which the different approaches to generic programming
can be used and compared.



The inductive structure of types. Different approaches to generic programming
view the structure of types differently:

– In PolyP [1] a data type is viewed as the fixed point of a pattern functor
that has kind ∗ → ∗ → ∗. Viewing a data type as a fixed point of a pattern
functor allows us to define recursive combinators such as the catamorphism
and anamorphism [6], and functions that return the direct recursive children
of a constructor [7]. A downside of this view on data types is that PolyP can
only handle regular data types of kind ∗ → ∗.

– In Generic Haskell [2, 8, 9], a data type is described in terms of a top-level
sums of products structural representation type. Generic functions in Generic
Haskell are defined on possibly nested data types of any kind. However,
because the recursive structure of data types is invisible in Generic Haskell,
it is hard to define the catamorphism and children functions in a natural
way, for example.

– In the ‘Scrap your boilerplate’ [3, 10] approach the generic fold is the central
steering concept. The generic fold views a value of a data type as either a
constructor, or as an application of a (partially applied) constructor to a
value. Using the generic fold it is easy to define traversal combinators on
data types, which can, for example, be specialized to update small parts of a
value of a large data structure. A disadvantage of the boilerplate approach is
that some generic functions, such as the equality and zipping functions, are
harder to define. Furthermore, the approach does not naturally generalize to
type-indexed data types [11, 9]. We can translate the boilerplate approach
to the level of data types by defining a particular generic view.

Other approaches to representing data types can be found in the Constructor
Calculus [4], and in the work of De Moor and Hoogendijk [5].

Generic views on data types. An approach to generic programming essentially
consists of two components: a facility to define recursive functions on a specific
set of types, called view types, and a view on the inductive structure of data
types, which maps data types onto view types. We call such a view on the
structure of types a generic view (or just view) on data types. Wadler [12] also
defines views on data types. The difference between Wadler’s views and generic
views is that the former constitute a method for viewing a single data type in
different ways, whereas the latter describes how the structure of a large class of
data types is viewed.

Each of the above generic views on data types has its advantages and disad-
vantages. Some views allow the definition of generic functions that are impossible
or hard to define in other approaches, other views allow the definition of more
efficient generic functions. This paper

– identifies the concept of generic views as an important building block of an
implementation for generic programming;

– shows that different choices of generic views have significant influence on the
class of generic functions that can be expressed;



– clearly defines what constitutes a generic view, and discusses how generic
views have been added to Generic Haskell;

– provides a common framework which can be used to compare different ap-
proaches to generic programming.

Views add expressiveness to a generic programming language. Generic functions
still work for arbitrary data types that can be expressed in the view, but the
choice between different views allows us to define more generic functions.

Organization. This paper is organized as follows. Section 2 briefly introduces
generic programming in Generic Haskell. Section 3 shows by means of examples
why generic views on data types are useful, and how they increase the expres-
siveness of a generic programming language. Section 4 formally defines a generic
view. For some of the examples of Section 3, we give the formal definition. Sec-
tion 5 discusses how views have been added to the Generic Haskell compiler.
Section 6 gives related work and conclusions.

2 Introduction to generic programming in Generic
Haskell

This section introduces generic programming in Generic Haskell. The introduc-
tion will be brief, for more information see [13, 11, 9]. Generic Haskell has slightly
changed in the last couple of years, and we will use the version described in Löh’s
thesis ‘Exploring Generic Haskell’ [9] (EGH) in this paper, which to a large ex-
tent has been implemented in the Coral release [8].

2.1 Type-indexed functions

A type-indexed function takes an explicit type argument, and can have behavior
that depends on the type argument. For example, suppose the unit type Unit,
sum type +, and product type × are defined as follows,

data Unit = Unit
data a + b = Inl a | Inr b
data a × b = a × b.

We use infix types + and × and an infix value constructor × here to ease the
presentation. The type-indexed function collect collects values from a data struc-
ture. We define function collect on the unit type, sums and products, integers,
and characters as follows:

collect〈Unit〉 Unit = [ ]
collect〈α + β〉 (Inl a) = collect〈α〉 a
collect〈α + β〉 (Inr b) = collect〈β〉 b
collect〈α× β〉 (a × b) = collect〈α〉 a ++ collect〈β〉 b
collect〈Int〉 n = [ ]
collect〈Char〉 c = [ ].



The type signature of collect is as follows:

collect〈a :: ∗ | c :: ∗〉 :: (collect〈a | c〉) ⇒ a → [c ].

The type of collect is parameterized over two type variables. The first type vari-
able, a, appearing to the left of the vertical bar, is a generic type variable, and
represents the type of the type argument of collect . Type variable c, appearing to
the right of a vertical bar, is called a non-generic (or parametric) type variable.
Such non-generic variables appear in type-indexed functions that are paramet-
rically polymorphic with respect to some type variables. The collect function
is parametrically polymorphic in the element type of its list result. It always
returns the empty list, but we will show below how to adapt it so that it collects
values from a data structure. Since it always returns the empty list there is no
need, but also no desire, to fix the type of the list elements. The type context
(collect〈a | c〉) ⇒ appears in the type because collect is called recursively on
sums and products, which means that, for example, if we want an instance of
collect on the type α + β, we need instances of collect on the types α and β.
Thus collect depends on itself. The theory of dependencies and type signatures
of generic functions is an integral part of dependency-style Generic Haskell.

The type signature of collect can be instantiated for specific cases, including
cases omitted in the definition as we shall see later, by the Generic Haskell
compiler, yielding, for example, the types

collect〈Unit〉 :: ∀c .Unit → [c ]
collect〈[α ]〉 :: ∀c a . (collect〈α〉 :: a → [c ]) ⇒ [a ] → [c ]

for the cases of the unit type and lists, respectively. The latter type can be read
as “given a function collect〈α〉 of type a → [c ], the expression collect〈[α ]〉 is of
type [a ] → [c ]”.

Depending on the situation, the function collect〈α〉 can be automatically
inferred by the compiler, or it can be user specified using local redefinitions. For
example, if we only want to collect the positive numbers from a list, we write:

let collect〈α〉 x = if x > 0 then [x ] else [ ]
in collect〈[α ]〉,

which has type Num a ⇒ [a ] → [a ]. Generally, we use a local redefinition to
locally modify the behavior of a generic function. Some generic functions such
as collect only reveal their full power in the context of local redefinitions.

2.2 Default cases

Suppose we wish to use function collect to collect the variables of the data type
Term, which represents lambda terms:

data Term = Var Variable | Abs Variable Term | App Term Term
newtype Variable = V String.



We cannot use local redefinitions as we did for the list case, because this would
require that the data type Term is parameterized over the type of variables.
Instead, we write function varcollect making use of default cases:

varcollect〈Variable〉 v = [v ]
varcollect extends collect

where collect as varcollect .

The first line defines the Variable case of varcollect . The next two lines copy the
definition of collect and rename its dependency on collect to varcollect . The use of
a default case is equivalent to manually copying the definition of collect , replacing
the calls to collect with calls to varcollect , and adding the case for Variable. The
more specific behavior of varcollect is reflected in its type signature:

varcollect〈a :: ∗〉 :: (varcollect〈a〉) ⇒ a → [Variable].

2.3 View types

A type-indexed function such as collect does not only work on the types that
appear as its type indices. To see why collect is in fact generic and works on
arbitrary data types, we give a mapping from data types to view types such as
units, sums and products. It suffices to define a function on view types (and
primitive or abstract types such as Int and Char) in order to obtain a function
that can be applied to values of arbitrary data types. If there is no specific case
for a type in the definition of a generic function, generic behavior is derived
automatically by the compiler by exploiting the structural representation.

For example, the definition of the function collect generically derived for lists
coincides with the following specific definition:

collect〈[α ]〉 [ ] = [ ]
collect〈[α ]〉 (x : xs) = collect〈α〉 x ++ collect〈[α ]〉 xs.

To obtain this instance, the compiler needs to know the structural representation
of lists, and how to convert between lists and their structural representation. We
will describe these components in the remainder of this section.

The structural representation (or structure type) of types is expressed in
terms of units, sums, products, and base types such as integers, characters, etc.
For example, for the list and tree data types defined by

data List a = Nil | Cons a (List a)
data Tree a b = Tip a | Node (Tree a b) b (Tree a b)

we obtain the following structural representations:

type List◦ a = Unit + a × List a
type Tree◦ a b = a + Tree a b × b × Tree a b,

where we assume that × binds stronger than +, and both type constructors
associate to the right. Note that the representation of a recursive type is not



recursive, and refers to the recursive type itself. The representation of a type in
Generic Haskell only represents the structure of the top level of the type.

If two types are isomorphic, the corresponding isomorphisms, also called
embedding-projection pairs, can be stored as a pair of functions converting back
and forth:

data EP a b = EP{from :: (a → b), to :: (b → a)}.

A type T and its structural representation type T ◦ are isomorphic, witnessed
by a value convT :: EP T T ◦. For example, for the list data type we have that
convList = EP fromList toList, where fromList and toList are defined by

fromList :: ∀a .List a → List◦ a
fromList Nil = Inl Unit
fromList (Cons x xs) = Inr (x × xs)
toList :: ∀a .List◦ a → List a
toList (Inl Unit) = Nil
toList (Inr (x × xs)) = Cons x xs.

The definitions of the embedding-projection pairs are automatically generated
by the Generic Haskell compiler for all data types that appear in a program.

Using structural representation types and embedding-projection pairs, a call
to a generic function on a data type T is reduced to a call on type T ◦. Hence, if
the generic function is defined for view types such as Unit, +, and ×, we do not
need cases for specific data types such as List or Tree anymore. For primitive
types such as Int, Float, IO or →, no structure is available. Therefore, for a
generic function to work on these types, a specific case is necessary.

2.4 Specializing generic functions

In this section we sketch how Generic Haskell specializes a generic function. As-
sume that collect , the collect function from Section 2.1, is called on the type argu-
ment Bool. No case is given for Bool, so Generic Haskell considers the structural
representation for Bool. The data type Bool and its structural representation
are given by

data Bool = False | True,
type Bool◦ = Unit + Unit.

We reduce a call of collect〈Bool〉 to a call collect〈Bool◦〉. The translation of
the latter function to Haskell code, using the cases of collect for view types,
is quite simple and described elsewhere (EGH,[2]). The call collect〈Bool◦〉 is of
type Bool◦ → [c ], whereas collect〈Bool〉 is of type Bool → [c ]. So to express
the call of collect〈Bool〉 in terms of the the call of collect〈Bool◦〉, we have to lift
the isomorphism between Bool and its representation to the type of the generic
function collect .

Given an embedding-projection pair between a type D and its structure type
D◦, we can use the generic function bimap to lift the isomorphism to arbitrarily



complex types. Recall that collect is defined in such a way that it returns the
empty list for every data type, and only becomes useful when locally redefined.
Similarly, bimap defines the identity embedding-projection pair for each data
type generically. A remarkable fact is that bimap can be defined on function
types. We give the cases for Unit, +, and → as an example (see, for example,
EGH for a complete definition):

bimap〈a1 :: ∗, a2 :: ∗〉 :: (bimap〈a1, a2〉) ⇒ EP a1 a2

bimap〈Unit〉 = EP id id
bimap〈α + β〉 =

let from+ (Inl a) = Inl (from bimap〈α〉 a)
from+ (Inr b) = Inr (from bimap〈β〉 b)
to+ (Inl a) = Inl (to bimap〈α〉 a)
to+ (Inr b) = Inr (to bimap〈β〉 b)

in EP from+ to+

bimap〈α → β〉 =
let from→ c = from bimap〈β〉 · c · to bimap〈α〉

to→ c = to bimap〈β〉 · c · from bimap〈α〉
in EP from→ to→.

Using local redefinition, we can plug in an embedding-projection pair in bimap
to lift the isomorphism between Bool and its representation to the type of the
generic function collect .

collect〈Bool〉 = let bimap〈α〉 = epBool in to (bimap〈α → [c ]〉) collect〈Bool◦〉.

The details of why this works are omitted here. It is, however, important to
realize that for generic functions that both consume and produce values of the
type argument’s type, both components of the embedding projection pair will be
applied: a value of the original type D is transformed into D◦ to be in suitable
form to be passed to the function that works on the structural representation.
Because the function also returns something containing values of type D◦, these
values are then converted back to type D . This is the reason why the embedding-
projection pair should contain an isomorphism. If it does not, a value could
change simply by the conversion functions that are applied, making it highly
difficult to define, for example, the generic identity function.

3 Views

We have explained how Generic Haskell defines a structural representation type
plus an embedding-projection pair for any Haskell data type. A type-indexed
function is generic because the embedding-projection pair is applied to the type
arguments by the compiler as needed. Other approaches to generic programming
use different, but still fixed representations of data types. In this section, we
argue that different views improve the expressiveness of a generic programming
system, because not every view is equally suitable for every generic function. In
Section 4 we will give a formal definition of generic views.



3.1 Fixed points

Consider the data type Term, introduced in Section 2.2, and the function subterms
that, given a term, produces the immediate subterms.

subterms :: Term → [Term]
subterms (Var x ) = [ ]
subterms (Abs x t) = [t ]
subterms (App t u) = [t , u ]

This function is an instance of a more general pattern. The function subtrees,
for example, produces the immediate subtrees of an external binary search tree.

subtrees :: ∀a b .Tree a b → [Tree a b ]
subtrees (Tip a) = [ ]
subtrees (Node l b r) = [ l , r ]

Given a recursive data type’s value, both subterms and subtrees retrieve the
immediate children corresponding to the recursion points in the data type’s
definition. Since the general pattern is clear, we would like to be able to express
it as a generic function. However, Generic Haskell does not allow us to define
such a function directly, due to the fact that the structure over which generic
functions are inductively defined does not expose the recursive occurrences in a
data type’s definition.

Generic Haskell’s precursor, PolyP, does give access to these recursive calls,
enabling the definition of a generic function that collects the immediate recursive
children of a value [7]. Generic functions in PolyP, however, are limited in the
sense that they can only be applied to regular3 data types of kind ∗ → ∗. In
particular, this precludes nested and mutually recursive data types.

Interestingly, it is possible to write a program in Generic Haskell that pro-
duces the immediate children of a value, but it requires some extra effort from
the user of the program. If regular recursive data types are expressed using an
explicit type-level fixed point operator:

data Fix f = In (f (Fix f ))
data TermBase r = VarBase Variable | AbsBase Variable r | AppBase r r
type Term′ = Fix TermBase
data TreeBase a b r = TipBase a | NodeBase r b r
type Tree′ a b = Fix (TreeBase a b),

then the generic function children can be defined with a single case for Fix.

children〈a :: ∗〉 :: (∀c . collect〈a | c〉) ⇒ a → [a ]
children〈Fix ϕ〉 (In r) = let collect〈α〉 x = [x ] in collect〈ϕ α〉 r

3 A data type is regular if it does not contain function spaces, and if the arguments of
the type constructor on the left- and right-hand sides in its definition are the same.
So the data type Flip defined by data Flip a b = MkFlip a (Flip b a) is not regular.



The children function depends on the collect function collect4 defined in Sec-
tion 2. The local redefinition fixes the type of the produced list and adapts
the collect function to construct singleton lists from the recursive components
in a fixed point’s value. The function collect ensures that these singletons are
concatenated to produce the result list.

Although this approach works fine, there is an obvious downside. The pro-
grammer needs to redefine her recursive data types in terms of Fix. Whenever
she wants to use children to compute the recursive components of a value of any
of the original recursive types, say Term or Tree, a user-defined bidirectional
mapping from the original types to the fixed points, Term′ and Tree′, has to be
applied.

With a fixed-point view, the compiler becomes capable of deriving the fixed
point for any regular recursive data type and will generate and apply the required
mappings automatically. The structure of a data type is then no longer perceived
as a sum of products, but as the fixed point of a sum of products. The only thing
we have to change in the definition of children to make use of the new view is
to add the name of the view to the type signature:

children〈a :: ∗ viewed Fix〉 :: (∀c . collect〈a | c〉) ⇒ a → [a ].

The definition of children is unchanged. For example, children〈[Int]〉 [1, 2, 3]
yields [[2, 3]]. The user of the function does not have to worry about defining
types in terms of Fix any longer: the translation happens behind the scenes.

Another well-known function that can be defined using the fixed-point view
is the catamorphism [14]. In the definition of cata we use a type-indexed type
AlgebraOf, which returns the algebra of a data type: a function from the pattern
functor of the data type to the result type. The details of this definition can be
found in EGH, and in the forthcoming release of Generic Haskell with views.

3.2 Balanced sums of products

Traditionally, Generic Haskell views the structure of data types using nested
right-deep binary sums and products. The choice for such a view is rather ar-
bitrary. A nested left-deep view or a balanced view may be just as suitable.
However, the chosen view has some impact on the behavior of certain generic
programs. The generic function enc, for instance, encodes values of data types
as lists of bits.

data Bit = Off | On
enc〈a :: ∗〉 :: (enc〈a〉) ⇒ a → [Bit]
enc〈Unit〉 Unit = [ ]
enc〈α + β〉 (Inl a) = Off : enc〈α〉 a

4 One might be tempted to write collect〈a | a〉 for the dependency, but this produces
incorrect type signatures for some specializations of children. The reason is that the
non-generic variable of collect must have kind ∗, which in general does not hold since
variable a can have any arbitrary kind.



enc〈α + β〉 (Inr b) = On : enc〈β〉 b
enc〈α× β〉 (a × b) = enc〈α〉 a ++ enc〈β〉 b
enc〈Int〉 n = encInt n
enc〈Char〉 c = encChar c

Here, encInt and encChar denote primitive encoders for integers and characters,
respectively. The interesting cases are the ones for sums where a bit is emitted
for every choice that is made between a pair of constructors. In the case for
products the encodings of the constituent parts are concatenated.

Applying a nested right-deep view to the type Compass of directions

data Compass = North | East | South | West ,

gives the structure

type Compass◦ = Unit + (Unit + (Unit + Unit)).

Using this structure, encoding a value with enc takes one bit at best (North) and
three bits at worst (West). In contrast, a balanced view Bal on the structure,
i.e.,

type Compass◦B = (Unit + Unit) + (Unit + Unit),

requires only two bits for any value of Compass.
In general, encoding requires O(n) bits on average when a nested structure

representation is applied, and O(log n) bits when a balanced representation is
used. All we have to do (next to implementing a balanced view Bal) is to change
the type signature of enc accordingly:

enc〈a :: ∗ viewed Bal〉 :: (enc〈a〉) ⇒ a → [Bit].

3.3 List-like sums and products

Suppose we have a generic function show which is of type

show〈a :: ∗〉 :: (show〈a〉) ⇒ a → String

and produces a human-readable string representation of a value. We want to
write a function showP that shows only a part of a value. The part that is
shown is determined by a path of type

type Path = [Int].

Non-empty lists of type Path select a part of the value to print. For instance,
[1] selects the second field of the top-level constructor, and [1, 0] selects the first
field of the top-level constructor thereof. The function has type

showP〈a :: ∗〉 :: (show〈a〉, showP〈a〉) ⇒ Path → a → String.

The motivation for showP comes from the Proxima editor [15], where there is
a need to generically handle paths to selections in arbitrary documents. Let us
look at the definition of showP on products:



showP〈α× β〉 (0 : p) (a × b) = if null p then show〈α〉 a else showP〈α〉 p a.

If the first path element is 0, the left component is selected. The encoding in bi-
nary products is such that the left component is always a field of the constructor,
and not an encoding of multiple fields. We can therefore test if the remainder
of the path is empty: if this is the case, we show the complete field using show ;
otherwise, we show the part of the field that is selected by the tail of the current
path.

showP〈α× β〉 (n : p) (a × b) = showP〈β〉 (n − 1 : p) b

If the first path element is not 0, we can decrease it by one and show a part of
the right component, containing the remaining fields.

There are several problems with this approach. Consider the following data
type and its structural representation:

data Con012 a b = Con0 | Con1 a | Con2 a b
type Con012◦ a b = Unit + a + a × b.

Using the standard view of Generic Haskell a product structure is only created if
there are at least two fields. If there is only one field, such as for Con1 , the single
field (here a) is the representation. Obviously, we then cannot use the product
case of the generic function to make sure that 0 is the topmost element of the
path.

We could add a check to the sum case of the function, detecting the size
of the underlying product structure by calling another generic function, or by
modifying the type of showP to pass additional information around. However,
consider a data type Rename and its structural representation:

data Rename = R Original
type Rename◦ = Original .

The structural representation does not even contain a sum structure. Although
it is possible to write showP in the standard view, it is extremely tiresome to
do so. The same functionality has to be distributed over a multitude of different
cases, simply because the structural encoding is so irregular, and we cannot rely
on sum and product structure to be present in any case.

A list-like view List on data types can help. For this purpose we introduce a
data type without constructors and without values (except bottom).

data Zero

The type Zero plays the role of a neutral element for sums in the same way as
Unit does for products. The above definition is not Haskell 98, but is supported
by GHC and can be simulated in Haskell 98.

In our list-like view, the left component of a sum always encodes a single
constructor, and the right component of a sum is either another sum or Zero. For
products, the left component is always a single field, and the right component
is either another product or Unit. In particular, there is always a sum and a
product structure. The data type Con012 is encoded as follows:



type Con012◦L a b = Unit + a ×Unit + a × b ×Unit + Zero.

Now, we can define showP easily:

showP〈a :: ∗ viewed List〉 :: (show〈a〉, showP〈a〉) ⇒ Path → a → String
showP〈Unit〉 Unit = error "illegal path"
showP〈α× β〉 (0 : p) (a × b) = showP〈α〉 p a
showP〈α× β〉 (n : p) (a × b) = showP〈β〉 (n − 1 : p) b
showP〈Zero〉 = error "cannot happen"
showP〈α + β〉 [ ] x = show〈α + β〉 x
showP〈α + β〉 p (Inl a) = showP〈α〉 p a
showP〈α + β〉 p (Inr b) = showP〈β〉 p b.

We have moved the check for the empty path to the sum case. We can do this
because we know that every data type has a sum structure in the list-like view.

3.4 Boilerplate approach

In the ‘Scrap Your Boilerplate’ approach, Lämmel and Peyton Jones present a
design pattern for writing programs that traverse data structures [3, 10]. These
traversals are defined using a relatively small library that comprises two types of
generic combinators: recursive traversals and type extensions. Generic functions
are defined in terms of these library functions, and not by induction on the
structure of types. The library functions, however, do use a particular view
on data types. This section discusses this view, dubbed Boilerplate, and shows
how to implement a traversal function based on this view. The emulation of
the boilerplate approach in Generic Haskell is useful for comparing different
approaches to generic programming, but it turns out to be less convenient to
use than the original boilerplate library due to the lack of higher-order generic
functions.

In the boilerplate approach all traversals are instances of a general scheme
imposed by a left-associative generic fold over constructor applications. So a type
is viewed as a sum of products, where a product is either a nullary constructor, or
the application of a constructor(-application) to a type. To emulate the behavior
of the generic fold, the product constructor × in the Boilerplate view is left
associative as well. The right component of a product is always a single field,
and the left component is either another product or Unit, similar to the List view
from Section 3.3.

For example, the Boilerplate view representations of the types of lists and
trees are given by:

type List◦BP a = Unit + (Unit× a)× List a
type Tree◦BP a b = Unit× a + ((Unit× Tree a b)× b)× Tree a b.

Besides generic traversals such as the generic fold, the Boilerplate view makes use
of type extensions. A type extension extends the type of a function such that it
works on many types instead of a single type. To emulate type extensions, we
have to be able to distinguish types by name. Therefore we use a type-indexed



function equipped with cases for specific types. The remaining cases – that is,
the extension – are provided in a definition on a view that does not operate on
the structure of types. For this purpose, we use the identity view (Id), which
merely wraps a data type in the Id data type:

data Id a = Id a.

For example, consider the function addPrefixVar that adds prefixes to variables:

addPrefixVar :: Variable → Variable
addPrefixVar (V x ) = V ("gh_" ++ x ),

this function is extended as follows to work on any type:

addPrefix 〈a :: ∗ viewed Id〉 :: a → a
addPrefix 〈Variable〉 x = addPrefixVar x
addPrefix 〈Id α〉 (Id x ) = Id x .

The Generic Haskell specialization algorithm chooses the Variable arm when
addPrefix is applied to that type. For all other types, the last arm is selected.

The definitions of the traversal combinators rely on the list-like character of
the Boilerplate view. For example, the gmapT combinator applies a transforma-
tion argument to the immediate children of a node, traversing it in a right to
left fashion. The transformation argument is a type-extended function, which in
our approach is modeled by a type-indexed function.

We implement type-extended arguments to combinators as type-indexed func-
tions bound to the combinator’s name followed by the Par suffix. For example,
the gmapT combinator has the following definition (omitting the dependencies
in the type, these can easily be inferred from the function definition):

gmapT 〈a :: ∗ viewed Boilerplate〉 :: a → a
gmapT 〈Unit〉 Unit = Unit
gmapT 〈α + β〉 (Inl a) = Inl (gmapT 〈α〉 a)
gmapT 〈α + β〉 (Inr b) = Inr (gmapT 〈β〉 b)
gmapT 〈α× β〉 (a × b) = gmapT 〈α〉 a × gmapTPar〈β〉 b.

The default definition of the transformation argument is the identity:

gmapTPar〈a :: ∗ viewed Id〉 :: a → a
gmapTPar〈Id α〉 (Id x ) = Id x .

The everywhere combinator applies a transformation to all nodes in a tree,
traversing it in a bottom-up fashion. It is defined in terms of the simple non-
recursive one-layer traversal combinator gmapT , or rather in terms of gmapTInst ,
an instance of gmapT where the parameter gmapTPar is instantiated with
everywhere.

everywhere〈a :: ∗ viewed Id〉 :: a → a
everywhere〈Id α〉 (Id x ) = Id (everywherePar〈α〉 (gmapTInst〈α〉 x ))
everywherePar〈a :: ∗ viewed Id〉 :: a → a
everywherePar〈Id α〉 (Id x ) = Id x



The first function transforms the children by means of a call to gmapTInst
and then applies the transformation argument everywherePar to the result. The
generic function gmapTInst is the defunctionalized equivalent of the application
of gmapT to everywhere:

gmapTInst〈a :: ∗ viewed Boilerplate〉 :: a → a
gmapTInst extends gmapT

where gmapT as gmapTInst
gmapTPar as everywhere.

Function gmapTInst is defined by means of a default case: it behaves as gmapT
except that the dependency on gmapTPar is changed to one on everywhere.

It is now trivial to write a function that adds prefixes generically by ‘applying’
everywhere to addPrefix .

genAddPrefix 〈a :: ∗〉 :: a → a
genAddPrefix extends everywhere

where everywhere as genAddPrefix
everywherePar as addPrefix .

Note that the gmapT case for products only recurses on the left component of
a product. Since the Boilerplate view guarantees that all fields of a constructor
are encoded as right components of products, it is easy to verify that gmapT
does indeed define a non-recursive traversal. This simple non-recursive scheme
allows us to derive several rich recursive traversal strategies from a single base
combinator. These strategies are written using default cases.

The type-extension operators used in the Boilerplate approach can be defined
using type-indexed functions on the Id view. First class type-indexed functions
are not supported in Generic Haskell. We emulate application of generic com-
binators to type-extension operators using defunctionalization techniques [16].
Defunctionalization is a standard technique to transform higher-order programs
into first-order equivalents.

Because Generic Haskell lacks higher-order generic functions, these and other
Scrap Your Boilerplate examples are better expressed using the standard view
instead of the Boilerplate view. We believe, however, that an encoding of the
Boilerplate approach within the view formalism can help to better compare it
with other approaches, and improve the overall understanding of different generic
programming techniques.

Hinze, Löh and Oliveira [17] define a generic boilerplate view using general-
ized algebraic data types. The view uses run-time representations of types and
higher order functions, and is hence closer to the original Boilerplate approach.
It follows that this view represents boilerplate functions more faithfully. Generic
Haskell does not use run-time representations of types, so we cannot use the
same approach.



Programs
P ::= {Di ; }i e type declarations

and main expression

Value declarations
d ::= x = e function declaration

Patterns
p ::= x variable pattern

| (C {pi}i) constructor pattern

Expressions
e ::= x variable

| C data constructor
| λx . e abstraction
| (e1 e2) application
| case e0 of {pi → ei}i

; case
| (fix e) fixed point
| let {di}i

; in e let

Fig. 1. Syntax of the expression language

4 Generic views, formally

The previous section shows why generic views are useful. This section formally
defines generic views, and presents the formal definition of the standard view
and the fixed-point view. The other views mentioned in the previous section can
also be defined using the formalism introduced in this section.

4.1 Notation

Throughout this section, we often use the following notation to denote repetition:

{Xi}i∈1..n ≡ X1 . . .Xn

{Xi}i∈1..n
; ≡ X1; . . . ;Xn

If not explicitly mentioned otherwise, such repetitions can be empty, i.e., n can
be 0. We sometimes omit the range of the variable if it is irrelevant or clear from
the context.

4.2 Syntax

Programs. Figure 1 shows the syntax of programs in the core language. This
language is a rather standard functional language. A program consists of zero
or more type declarations and a single expression: the main function.

Types and kinds. The syntax of the type and kind language is shown in Figure 2.
New types are introduced by means of data declarations. Such a declaration
associates a type constructor with zero or more data constructors, each of which
has zero or more fields. The parameterized types are explained below.

Generic programming extensions. To facilitate generic programming, the core
language should be extended with parameterized type patterns and type-indexed
functions with dependencies, and adapted with the facility to specify a view in
the signature of a generic function.



Type declarations

D ::= data T = {Λai :: κi . }i {Cj {tj ,k}k}j
|

algebraic data type

Parameterized types
u ::= {Λai :: κi . }i t type-level abstraction

Types
t ::= a type variable

| T type constructor
| (t1 t2) type application
| ∀a :: κ . t universal quantification

Kinds
κ ::= ∗ kind of proper types

| κ1 → κ2 function kind

Fig. 2. Syntax of types and kinds

Kind environments
K ::= ε empty kind environment

| K, a :: κ type-variable binding
| K,T :: κ type-constructor binding

Type environments
Γ ::= ε empty type environment

| Γ, x :: t variable binding
| Γ,C :: t data-constructor binding

Fig. 3. Syntax of environments

Structure types in Haskell are declared as type synonyms. Type synonyms
are not supported in the core language. Therefore, to describe structure types,
the language contains parameterized types, which are essentially a nesting of
type-level lambda abstractions around a type of kind ∗. Parameterized types are
only used in view definitions, they cannot appear in a core-language program.

Rules. The well-formedness rules for programs, types and kinds, the kinding
rules for types and the typing rules for expressions are standard. The operational
semantics of the core language is omitted. More information about the core
language can be found elsewhere (EGH,[18]).

4.3 Definitions

Using the notion of parameterized types, we can formalize the observation that
a view comprises a collection of view types and algorithms for the generation of
structure types and conversion functions. In the following definitions we will use
kind environments and type environments; their syntax is defined in Figure 3.

Definition 1 (Generic View). A generic view V consists of a collection of
bindings for view types,

viewtypesV ≡ K;Γ,

a partial mapping from types to structure types,

V [[D0 ]] str ≡ u; {Di}i∈1..n
, ,

and, for each type in the domain of this mapping, conversions between values
and structure values,



V [[D0 ]] conv ≡ efrom; eto.

Notice that we allow the mapping from types to structure types to generate zero
or more additional declarations for supporting data types. The types introduced
by these declarations can be used for the generation of structure types. This is
used in the fixed-point view, for example.

For a view to be useful for generic programming, we require it to have three
essential properties. First, the mapping from types to structure types should
preserve kinds.

Definition 2 (Kind Preservation). A generic view V with

viewtypesV ≡ KV ;ΓV

is kind preserving if for each well-formed declaration D0 of a type constructor
T such that K ` T :: κ, for which a structure type u can be derived,

V [[D0 ]] str ≡ u; {Di}i∈1..n
, ,

it follows that under kind environment K′

K′ ≡ K,KV {, Ti :: κi}i∈1..n ,

containing K, KV , and all the kinds of the Di declarations, the supporting type
declarations Di are well-formed and the structure type u has the same kind κ as
the original type T,

K′ ` u :: κ.

Furthermore, the conversion functions derived from a type declaration should
be well-typed and indeed convert between values of the original type and values
of the structure type, which is captured by the following definition.

Definition 3 (Well-typed Conversion). A view V with

viewtypesV ≡ KV ;ΓV

generates well-typed conversions if, for each well-formed declaration D0 of a type
constructor T of kind {κi →}i∈1..`∗, for which a structure type t can be derived,

V [[D0 ]] str ≡ {Λai :: κi . }i∈1..` t ; {Di}i∈1..n ,

it follows that the corresponding conversion functions efrom and eto,

V [[D0 ]] conv ≡ efrom; eto,

take values of the original data type T to values of the structure type t and vice
versa,

K′;Γ ′ ` efrom :: {∀ai :: κi . }i∈1..` T {ai}i∈1..` → t
K′;Γ ′ ` eto :: {∀ai :: κi . }i∈1..` t → T {ai}i∈1..`

under environments K′ as in Definition 2 and Γ ′ containing the view bindings
ΓV and the types of the constructors from D0 and all Di .



S [[D0 ]] str ≡ u; {Di}i
,

S [[ {Cj {tj ,k}k}j
| ]] str ≡ t

S [[data T = {Λai :: κi . }i {Cj {tj ,k}k}j
| ]] str ≡ {Λai :: κi . }i t ; ε

Fig. 4. Representation of data types in the standard view

Finally, the conversion functions from structure values to values should form
the inverses of the corresponding functions in the opposite direction:

Definition 4 (Well-behaved Conversion). A generic view V produces well-
behaved conversions if, for each well-formed declaration D of a type constructor
T , conversion functions efrom and eto are generated,

V [[D ]] conv ≡ efrom; eto,

such that eto is the left inverse of efrom with respect to function composition:

eto (efrom v) evaluates to v

for each value v of type T.

(Note that, for a well-behaved conversion pair, the function that takes values to
structure values is injective; thus, a structure type should have at least as many
elements as the corresponding original type.) Why do we want a generic view to
have well-behaved conversions? Assume function gid is a generic identity function
that is defined as a recursive function that traverses and copies the structure. To
prove that this function is an identity, we have to ensure that the conversions
that are applied during the traversal are well-behaved and do not modify the
value.

Only views that possess all three of the discussed properties are considered
valid:

Definition 5 (Validity). A generic view is valid if it is kind preserving and
generates well-typed, well-behaved conversions.

We claim the validity of the standard, fixed point, balanced, list-like and
boilerplate views.

The validity of a view has two important consequences. First, well-behaved
conversions allow us to prove properties like the property for the generic identity
function given after Definition 4. Second, let us recall from Section 5.2 that a
generic function call using a new data type can be reduced to a call using the
structural representation of the data type. This reduction is achieved by means
of a wrapper that uses the structural representation and embedding-projection
specified in the view. The theorem states that the generated wrapper is type-
correct:



S [[ {Cj {tj ,k}k}j
| ]] str ≡ t

S [[ ε ]] str ≡ Zero
(str-std-1)

S [[C ]] str ≡ Unit
(str-std-2)

S [[C t ]] str ≡ t
(str-std-3)

n ∈ 2 . . S [[C {tk}k∈2..n ]] str ≡ t ′2

S [[C {tk}k∈1..n ]] str ≡ Prod t1 t ′2
(str-std-4)

m ∈ 2 . .

S [[ {Cj {tj ,k}k∈1..nj }j∈2..m
| ]] str ≡ t2 S [[C1 {t1,k}k∈1..n1 ]] str ≡ t1

S [[ {Cj {tj ,k}k∈1..nj }j∈1..m
| ]] str ≡ Sum t1 t2

(str-std-5)

Fig. 5. Representation of constructors in the standard view

Theorem 1. Let V be a view with

V [[D0 ]] str ≡ u; {Di}i∈1..n
,

V [[D0 ]] conv ≡ efrom; eto.

For a type-indexed function x of arity 〈r | s〉, where all types γj in non-generic
positions of x are of kind ∗, the declaration

let {bimap〈βi〉 = EP efrom eto}i∈1..r
;

{bimap〈γj 〉 = EP id id}j∈1..s
;

in to bimap〈base (x 〈{βi}i∈1..r
, | {γj}j∈1..s

, 〉)〉 x 〈u〉

has the same type as x 〈T {αj}j∈1..n〉. Here base (f ) returns the base type (see
EGH) of f , i.e., the type specified for the generic function.

We will use the above declaration as the translation (or specialization) of

x 〈T {αj}j∈1..n viewed V〉.

The proof of this theorem (which is very similar to the proof of Theorem 11.1
in EGH) uses the facts that a valid view preserves kinds, and has well-typed
conversions. Well-behavedness of the conversions is not necessary for proving
the theorem.

4.4 The standard view

We describe the three components of a generic view for the standard Generic
Haskell view S of data types



S [[D ]] conv ≡ efrom; eto

S [[ {Cj {tj ,k}k}j
| ]] conv ≡ {pfrom,j}j

| ; {pto,j}j
|

efrom ≡ λx . case x of {pfrom,j → pto,j}j
; eto ≡ λx . case x of {pto,j → pfrom,j}j

;

S [[data T = {Λai :: κi . }i {Cj {tj ,k}k}j
| ]] conv ≡ efrom; eto

Fig. 6. Conversions for data types in the standard view

View types. The view types of the standard view are given by the declarations

data Zero =
data Unit = Unit
data Sum = Λa :: ∗ . Λb :: ∗ . Inl a | Inr b
data Prod = Λa :: ∗ . Λb :: ∗ . a × b.

These types represent nullary sums, nullary products, binary sums, and binary
products, respectively. It is easy to convert these definitions into bindings in the
environments Γ and K.

Generating structure types. The algorithm that generates structural representa-
tions for data types is expressed by judgements of the forms

S [[D0 ]] str ≡ u; {Di}i∈1..n
,

S [[ {Cj {tj ,k}k∈1..nj }j∈1..m
| ]] str ≡ t .

The former express how type declarations are mapped to parameterized types
and lists of supporting declarations; the latter express how a type is derived from
a list of constructors. The rules are shown in Figures 4 and 5.

Type declarations are handled by the rule in Figure 4. The type parameters
of a declared type constructor are directly copied to the resulting structure type.
Notice that the standard view does not need auxiliary declarations.

For constructors, we distinguish five cases. The first rule, (str-std-1), repre-
sents empty constructor lists with Zero. The next three cases handle singleton
lists of constructors. Fieldless constructors are, by rule (str-std-2), represented
by nullary products. Rule (str-std-3) represents a unary constructors by the type
of its field. If a constructor has two or more fields, rule (str-std-4) generates a
product type and recurses. Finally, lists that contain two or more constructors
are represented by a recursively built sum (str-std-5).

Generating conversions. The rules for generating conversion functions are shown
in Figures 6 and 7 and are of the forms

S [[D0 ]] conv ≡ efrom; eto

S [[ {Cj {tj ,k}k}j| ]] conv ≡ {pfrom,j}j| ; {pto,j}j| ,



S [[ {Cj {tj ,k}k}j
| ]] conv ≡ {pfrom,j}j

| ; {pto,j}j
|

S [[ ε ]] conv ≡ ε; ε
(conv-std-1) S [[C ]] conv ≡ C ;Unit

(conv-std-2)

S [[C t ]] conv ≡ C x ; x
(conv-std-3)

n ∈ 2 . . {x1 6≡ xk}k∈2..n S [[C {tk}k∈2..n ]] conv ≡ C {xk}k∈2..n ; pto

S [[C {tk}k∈1..n ]] conv ≡ C {xk}k∈1..n ; x1 × pto
(conv-std-4)

S [[C1 {t1,k}k∈1..n1 ]] conv ≡ pfrom,1; pto,1 m ∈ 2 . .

S [[ {Cj {tj ,k}k∈1..nj }j∈2..m
| ]] conv ≡ {pfrom,j}j∈2..m

| ; {pto,j}j∈2..m
|

S [[ {Cj {tj ,k}k∈1..nj }j∈1..m
| ]] conv

≡ {pfrom,j}j∈1..m
| ; Inl pto,1 {| Inr pto,j}j∈2..m

(conv-std-5)

Fig. 7. Conversions for constructors in the standard view

i.e., type declarations give rise to pairs of conversion functions, while lists of data
constructors give rise to pairs of patterns.

The rule in Figure 6 constructs a ‘from’ function that matches values of the
original type against a list of patterns. If a value matches a certain pattern, a
structure value is produced by using a complementary pattern; here, we make use
of the fact that the pattern language is just a subset of the expression language.
A ‘to’ function is created by inverting the patterns. The pairs of pattern lists
are generated using the rules for constructor lists. These rules are analogous to
the rules for generating structure types from constructor lists.

If there are no constructors, there are no patterns either (conv-std-1). Rule
(conv-std-2) associates a single constructor with the value Unit . Rule (conv-std-
3) associates unary constructors with variables that correspond to their field
values. If a constructor has two or more fields, rule (conv-std-4) associates the
corresponding variables to product patterns. Finally, if the list of constructors
has two or more elements, rule (conv-std-5) applies; it prefixes the patterns with
the injection constructors Inl and Inr .

4.5 The fixed-point view

An essential aspect of the fixed-point view is the automatic derivation of pattern
functors.

Given a declaration D1 of type T , a declaration D2 for the pattern functor
ptr(T ) is generated by the rule in Figure 8, which takes the form



[[D1 ]] ptr ≡ D2.

The metafunction ptr produces a unique name for the functor. The definition of
ptr(T ) follows the structure of T , replacing all recursive calls by an extra type
argument.

[[D1 ]] ptr ≡ D2

{a`+1 6≡ ai}i {{t ′j ,k ≡ [a`+1 / T {ai}i ] tj ,k}k}j

D ≡ data ptr(T ) = {Λai :: ∗ . }i
Λa`+1 :: ∗ . {ptr(Cj ) {t ′j ,k}k}j

|

[[data T = {Λai :: ∗ . }i {Cj {tj ,k}k}j
| ]] ptr ≡ D

Fig. 8. Pattern functors

View types. The sole view type of the fixed-point view is Fix:

data Fix = Λϕ :: ∗ → ∗ . In (ϕ (Fix ϕ)).

Generating structure types. The rule for generating structure types for F , which
has the form

F [[D0 ]] str ≡ u; {Di}i∈1..n
, .

is given in Figure 9. This rather straightforward rule states that a structure type
is derived by applying the type Fix to a partially applied pattern functor. The
declaration of the pattern functor is emitted as a supporting declaration. Note
that the parameters of the original data type are restricted to kind ∗, excluding
higher-order kinded types from the view domain. The need for this restriction
will be explained later.

F [[D0 ]] str ≡ u; {Di}i
,

D ≡ data T = {Λai :: ∗ . }i {Cj {tj ,k}k}j
|

type F [[D ]] str ≡ {Λai :: ∗ . }i Fix (ptr(T ) {ai}i); [[D ]] ptr

Fig. 9. Representation of data types in the fixed-point view



Generating conversions. Generating conversion functions for F is more involved.
The algorithm is presented in Figures 10 and 11. It consists of judgements of the
forms

F [[D0 ]] conv ≡ efrom; eto

F [[ t ]] conv
T {ai}i ;ep ≡ ep′.

The first form indicates that conversion functions efrom and eto are derived based
on the structure of a type declaration D0. The second form expresses the gener-
ation of embedding projection expressions that convert constructor fields to or
from the representation type. The generation of these embedding projections is
driven by the original type T {ai}i , the type of the field t and the embedding-
projection ep for the data type, with type EP (T {ai}i) (Fix (ptr(T ) {ai}i)).

Each conversion function converts the fields using the appropriate compo-
nents of the field embedding-projections. Because the embedding-projection may
be recursively defined, Figure 10 uses the core language’s recursive let construct.

In Figure 11, the conversion functions for a field are given by the application
of bimap to the field type with occurrences of T {ai}i abstracted. This appli-
cation lifts the given embedding-projection to the abstracted field type in the
fashion of Section 2.4. For instance, the embedding-projection of the data type
Rose

data Rose a = Rose a [Rose a ],

with type EP (Rose a) (Fix (ptr(Rose) a)), is lifted to types EP a a and
EP [Rose a ] [Fix (ptr(Rose) a)] for each of the two constructor fields respec-
tively.

Note that the conversion functions are not directly defined by means of
bimap. Rule conv-fix uses a special bracket notation [[ · ]] to denote the transla-
tion of the bimap expression to the core language. In other words, the conversion
functions do not include calls to the generic function bimap, but rather, the core
language equivalents of those calls.

F [[D ]] conv ≡ efrom; eto

{{F [[ tj ,k ]] conv
T {ai}i ;ep ≡ ej ,k}k}j

efrom ≡ λx . case x of {Cj {xj ,k}k → In (ptr(Cj ) {from ej ,k xj ,k}k )}j

eto ≡ λx . case x of {In (ptr(Cj ) {xj ,k}k ) → Cj {to ej ,k xj ,k}k}j

ep′ ≡ let ep = EP efrom eto in ep

F [[data T = {Λai :: ∗ . }i {Cj {tj ,k}k}j
| ]] conv ≡ from ep′; to ep′

Fig. 10. Conversions for data types in the fixed-point view



F [[ t ]] conv
T {ai}i ;ep ≡ ep′

t ′ ≡ [α / T {ai}i ] t

F [[ t ]] conv
T {ai}i ;ep ≡ [[ let bimap〈α〉 = ep in bimap〈t ′〉 ]] (conv-fix)

Fig. 11. Conversions for fields in the fixed-point view

Mutual recursion, nested data types and higher-order kinded types. In PolyP,
generic functions can only be applied to regular data types. This restriction ex-
cludes mutually recursive data types, nested data types and higher-order kinded
data types from the class of data types to which a generic function can be ap-
plied. The fixed-point view has exactly the same restrictions, and is hence a
faithful implementation of the view on data types used in PolyP. It is possible to
adapt the fixed-point view such that higher-order kinded types can be handled,
but in order to stay as close as possible to the view of data types of PolyP, we
refrain from doing so.

Alternative solution. To circumvent the fixed-point view problems with higher-
order kinded types, we consider an alternative view in which recursive calls in
data types are modeled by a type similar to Fix, but which also maintains an
embedding-projection pair between the original data type and its representation
as a fixed point.

data Rec f r = InR (f r) (EP r (Rec f r))

Like Fix, Rec takes a type argument of kind ∗ → ∗, which will be used to pass
in the base functor. Additionally, Rec takes an argument of kind ∗ that will
represent the data type itself. The structural representation for a type T :: {∗ →
}i∗ is now given by

type T ◦
R {a}i = Rec (ptr(T ) {a}i) (T {a}i).

As defined, a value of type T ◦
R {a}i consists of two parts: a value of type

ptr(T ) {a}i and an embedding-projection pair witnessing the isomorphism be-
tween T and T ◦

R.
The need for explicitly encoding the isomorphism into the structure type

becomes clear when we consider the Rec case for the generic function children.
Instantiating the type of children, given in Section 3, to Rec yields (dependencies
omitted):

children〈Rec ϕ ρ〉 :: ∀f r . (. . . ) ⇒ Rec f r → [Rec f r ].

The ‘natural’ definition of the case for Rec does not adhere to this type though,

children〈Rec ϕ ρ〉 (InR r ) = let collect〈α〉 a = [a ] in collect〈ϕ α〉 r
-- type incorrect,



because it produces a list of which the elements are of type r rather than type
Rec f r . This can be fixed using the embedding-projection pair that is contained
within the Rec value:

children〈Rec ϕ ρ〉 (InR r ep) = let collect〈α〉 a = [from ep a ]
in collect〈ϕ α〉 r .

The compiler-derived embedding-projection maps for the Rec view are included
in the generated structure-type values:

data GRoseBase f a r = GBranchBase a (f r)
type GRose◦R f a = Rec (GRoseBase f a) (GRose f a)
convGRose,R :: ∀f a .EP (GRose f a) (GRose◦R f a)
convGRose,R = EP fromGRose,R toGRose,R.

fromGRose,R (GBranch a as)
= InR (GBranchBase a as) convGRose,R

toGRose,R (InR (GBranchBase a as) ep)
= GBranch a as

Instead of applying the conversion functions recursively, they are embedded in
the structure-type value. Hence, we do not encounter problems with higher-order
kinded types, as we do for representations involving Fix.

5 Generic views in the Generic Haskell compiler

The latest version of the Generic Haskell compiler that implements views can be
downloaded via svn: https://svn.cs.uu.nl:12443/repos/Generic-Haskell/
branches/GenericViews. We have implemented (an extension of) the standard
view, the fixed-point view and the list-like sums and products view. The next
release of Generic Haskell will come with all the views mentioned in this paper:
in addition to the views already implemented, the balanced sums and products
view, and the identity and boilerplate views. In the previous version of the
Generic Haskell compiler [8] we do not really use the standard view as presented
here, but additionally use representation data types Con and Lab to encode
information about constructors and record field labels in the data type. The
presence of these data types makes it possible to write functions such as show
and read that produce or consume a representation of a value and therefore rely
on the names of constructors and labels.

Since there is no reason to assume that the six views given in this paper are
the only useful views, we have considered developing a special-purpose language
for specifying views in user programs. We have decided not to do this for three
reasons:

– We expect that these views suffice for most purposes and users.
– A generic view consists of a set of view types, a function that generates

structure types, and a function that generates conversion functions, and it



follows that such a special-purpose language for specifying views would be
a complete programming language in itself.

– To add a new view to Generic Haskell, the compiler has to be modified.
Although this might sound scary, in practice it is rather simple.

The next section describes how a view is added to the Generic Haskell compiler.

5.1 Adding a view to the Generic Haskell compiler

A new view is added to the Generic Haskell compiler by implementing a module
that contains a view declaration with the following type:

(Name,TDecl → Maybe (LamType, [TDecl],Expr,Expr, [TDecl])).

A view consists of a name, and a function that can be called on the abstract
representation of a type synonym or a data type (a TDecl) to produce a parame-
terized structure representation type (a LamType), supporting type declarations
(first [TDecl]) and an embedding-projection pair (two Expr’s). Views that apply
to a subset of the Haskell data types can be implemented by returning Nothing
on data type definitions that are outside of the view domain. Note that the
result of the view-generating function directly corresponds to the maps V [[ · ]] str

and V [[ · ]] conv. The collection viewtypesV of bindings that are required by the view
must be added to the Generic Haskell Prelude, i.e., they must be available for
the Generic Haskell compiler to parse.

The need for the second list of type declarations is better explained with an
example. Consider the application of the children function (Section 3) to the
Tree data type. This function definition uses the fixed-point view structure type
of Tree. That is, the type Fix applied to the supporting type TreeBase, which is
the base functor of Tree. This structure type is not yet enough. The definition
of children applies collect to the base functor of the data type. Because collect is
defined on the standard view, we need to generate a standard structure type for
TreeBase, a pair of standard embedding projections and supporting declarations.
In short, if we need a fixed-point view on Tree, we also need a standard view on
TreeBase. This is achieved by returning TreeBase in the second declaration list
when generating the view components for Tree. This list, which is a subset of the
list of supporting declarations, is recursively processed by view-generating func-
tions. The implementation keeps track of additional information to determine
which view-generating functions should be called on these declarations, and to
avoid non-termination in certain cases.

The validity of a view can only be checked to a certain extent. The compiler
can verify the kind preservation and well-typed conversion properties of the view:
for each structural representation and embedding-projection pair generated, kind
and type checking is performed. The well-behavedness of the conversion cannot
be verified by the compiler, since verifying that the composition of two arbitrary
functions is the identity is an undecidable problem. This property remains a
proof obligation for the implementor of the view.



A view implementor has to deal with some additional implementation details
that slightly complicate views, but that are not of direct concern for this paper.
The interested reader can find more implementation information in the source
distribution of Generic Haskell extended with views, in particular in the file
/src/views/README and the view modules in the same directory.

5.2 Specialization

The specialization mechanism is independent of the actual view, see Theorem 1.
For other views than the standard view, different structural representations and
embedding-projection pairs are used, but the specialization procedure remains
exactly the same. The only thing that has changed in the implementation of
specialization within the Generic Haskell compiler is that all the references to
structural representation types and embedding-projection pairs point to the view
that is specified for the function in question.

6 Conclusions, and related work

We have shown that generic views on data types can make generic functions
both easier to write and more efficient. Generic views add expressiveness to
a generic programming language. Furthermore, generic views allow us to use
different generic programming styles in a single framework.

Although there are a multitude of approaches for generic programming, the
idea to use multiple views on data types in a single approach is, to the best of our
knowledge, original. Using our approach to views we can express many different
approaches to generic programming in a single framework. Our framework does
have a limitation though: a structure type is created from a single data type
declaration at a time. This poses no problems for views that transform only the
top level representation of a data type, consider for instance type List◦ in Sec-
tion 2.3. Views that deeply transform representations, however, face limitations:
the fixed-point view, for example, transforms the recursive occurrences of a sin-
gle recursive data type, and hence it cannot handle mutually recursive ones. This
is not a fundamental problem: we could have adapted the framework to allow for
this. However, since we know of no existing approach to generic programming
that would need this extra complexity we have refrained from doing so.

The name “generic view” is derived from Wadler’s proposal to introduce
views in (a predecessor of) Haskell [12]. Using one of these views, a single Haskell
data type can be analyzed in a different way, by introducing additional construc-
tors by which a value can be constructed, and on which pattern matching can be
performed. A view is essentially like the introduction of an additional data type,
together with the definition of conversion functions between values from the orig-
inal type and values of the view type. These conversions are then transparently
applied by the compiler where necessary.

Generic views are different in that they define a representation and conver-
sions for many types at the same time. Moreover, the representation types need



not be new data types, but can be built from existing data types. Wadler’s views
have the advantage that they can be added to the Haskell programming language
relatively easily, allowing every programmer to add her own views. On the other
hand, generic views have to be added to a generic programming system, such as
the Generic Haskell compiler, following the guidelines described in the previous
sections. However, we expect that the views we describe in this paper are suffi-
cient for most purposes and users, and we do not assume a user will frequently
want to add a new view to the Generic Haskell compiler.

Both views and generic views require that the definition of a new view goes
along with a proof obligation for the programmer that cannot easily be captured
in a language like Haskell. The conversion between the original type and the view
type (structure type in our framework), be it a single pair of functions such as in
Wadler’s proposal, or a type-indexed family of functions such as for generic views,
must really witness isomorphisms, otherwise unexpected results may occur.

Since Wadler’s views proposal, several variations of views have been given [19–
21]. Our approach is closest to Wadler’s proposal in that we also require the exis-
tence of an isomorphism between the original type and the view type (structure
type). Views have also been proposed in the context of XML and databases [22,
23]. Generic views as proposed in [24] are used to automatically convert between
two given views. The generic view concept as introduced in this paper does not
seem to have been investigated in this field.

The idea of using different sets of data types for inductive definitions of
type-indexed functions is common in the world of dependent types [25, 26]. This
corresponds to the idea of having views that work on different subsets of the
Haskell data types. However, in the approaches we have seen there is no auto-
matic conversion between syntactically definable data types as offered by the
dependently typed programming language into representations as defined by the
view or universe.
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