
On the Rôle of Minimal Typing Derivations
in Type-driven Program Transformation

Stefan Holdermans
Joint work with Jurriaan Hage (Utrecht University)

LDTA 2010
March 27, 2010

Paradijslaan 28
5611 KN Eindhoven
The Netherlands
E-mail: stefan@vectorfabrics.com



Type-driven Program Transformation

Typically proceeds in two logical phases:

1 Analysis: annotating a source program with types from a
nonstandard type system capable of expressing certain
properties of interest.

2 Synthesis: using the annotations to drive the actual
transformation into a target program.

Often establishes some form of program optimisation.

2 | March 27, 2010 LDTA 2010



Dead-code Elimination

const :: ∀α β. α→ β → α
const x y = x

goldenRatio :: Double
goldenRatio =

const 1.618 ((λz→ z2 + 2 ∗ z + (z+3)∗(z+2)
(z+1)2 ) 3.141)

3 | March 27, 2010 LDTA 2010

doesn’t use its 2nd argument

Transformation must be safe, i.e., semantics-preserving.



Type-driven Dead-code Elimination

1 Analysis: annotate the program with liveness types.
• Type D for code that is guaranteed not to be evaluated.
• Type L for code that may be evaluated.
• Types · → · for functions.

2 Synthesis: replace code with type D by ⊥.

4 | March 27, 2010 LDTA 2010



Type-driven Dead-code Elimination
Example

const :: ∀α β. α→ β → α
const x y = x

goldenRatio :: Double
goldenRatio =

const 1.618 ((λz→ z2 + 2 ∗ z + (z+3)∗(z+2)
(z+1)2 ) 3.141)

5 | March 27, 2010 LDTA 2010

::L→ D→ L

::L::L

::L→ D→ L
::L

::D



Subeffecting

• It is safe to silently “cast” an expression of type L to type D.
• In particular: live arguments can be bound to dead

parameters.

f x = const x x

• Akin to subtyping in object-oriented languages.

6 | March 27, 2010 LDTA 2010



Subeffecting
Example

twice :: ∀α. (α→ α)→ α→ α
twice f x = f (f x)

goldenRatio :: Double
goldenRatio =

twice (λy→ 1.618) ((λz→ z2 + 2 ∗ z + (z+3)∗(z+2)
(z+1)2 ) 3.141)

7 | March 27, 2010 LDTA 2010

::(D→ L)→ D→ L

::D→ L
::D→ L

::D (subeffecting)

::L

::(D→ L)→ D→ L

::D→ L ::D



Higher-order Functions
Another Example

twice :: ∀α. (α→ α)→ α→ α
twice f x = f (f x)

goldenRatio :: Double
goldenRatio = twice (λy→ y) 1.618

8 | March 27, 2010 LDTA 2010

::(L→ L)→ L→ L

::L→ L ::L→ L ::L::L

::(L→ L)→ L→ L

::L→ L ::L



Modularity

• What liveness type to assign to an HOF depends on how
it’s used.

twice (λy→ 1.618) ((λz→ z2 + 2 ∗ z + (z+3)∗(z+2)
(z+1)2 ) 3.141)

gives twice :: (D→ L)→ D→ L.

twice (λy→ y) 1.618

gives twice :: (L→ L)→ L→ L.

• But what if we require separate compilation?
• The uses of an exported function may not be known at

compile-time.

9 | March 27, 2010 LDTA 2010



Pessimisation
(Wansbrough, 2002)

• Assume that parameters of function type are to be bound
to functions that may use all their arguments.

twice :: (L→ L)→ L→ L

• This is always safe, but pessimism typically propagates to
use sites.

10 | March 27, 2010 LDTA 2010



Polyvariance

• Allow liveness types to abstract over liveness properties.
• That is, use polymorphic types as in ML or Haskell:

twice :: ∀β. (β → L)→ β → L

• Resulting transformation is polyvariant or context-sensitive.

11 | March 27, 2010 LDTA 2010



Polyvariance
Example

twice :: ∀α. (α→ α)→ α→ α
twice f x = f (f x)

goldenRatio :: Double
goldenRatio =

twice (λy→ 1.618) ((λz→ z2 + 2 ∗ z + (z+3)∗(z+2)
(z+1)2 ) 3.141)

12 | March 27, 2010 LDTA 2010

::∀β. (β → L)→ β → L still transformed pessimistically

::L

::(D→ L)→ D→ L (instantiation)

::D→ L ::D



Implementation

• Type systems provide useful idioms for designing and
defining analyses and transformations: subeffecting,
polymorphism, . . .

• What about implementing type-driven transformations?
• It seems natural to adapt an off-the-shelf type-inference

algorithm for Haskell-like languages.
• But. . .

13 | March 27, 2010 LDTA 2010



Principal Types

• Standard type-inference algorithms associate functions
with their most polymorphic type.

twice :: ∀β1 β2 β3 β4. (β1 → β1 t β2 t β3)→ β1 t β4 → β2

ϕ1 t ϕ2 =

{
D, if ϕ1 = ϕ2 = D
L, otherwise

• Principal types guarantee the highest degree of
context-sensitivity.

14 | March 27, 2010 LDTA 2010



Local Functions

goldenRatio =
let twice f x = f (f x)
in twice (λy→ 1.618) ((λz→ z2 + 2 ∗ z + (z+3)∗(z+2)

(z+1)2 ) 3.141)

• Assigning twice its principal type means that the body of
twice is transformed pessimistically.

• Assigning twice the monomorphic type (D→ L)→ D→ L
means that we eliminate the subexpression (f x) from the
body of twice.

15 | March 27, 2010 LDTA 2010



Local Functions
(Continued)

• So, should local functions always have monomorphic
types?

goldenRatio =
let twice f x = f (f x)
in twice (λy→ 1.000) 3.141 + twice (λz→ z) 0.618

• The only safe monomorphic type for twice is
(L→ L)→ L→ L, which prevents the elimination of 3.141.

• Poisoning: a single use with a “bad” type affects all use
sites (Wansbrough and Peyton Jones, POPL 1999).

16 | March 27, 2010 LDTA 2010



Strategy for Higher-order Functions

• Open-scope HOFs are always assigned their principal
types. (Ensures highest degree of safety and flexibility.)

• If a closed-scope HOF is only applied to dead arguments,
annotate the corresponding parameter with D. (Body can be
optimised agressively.)

• If a closed-scope HOF is only applied to live arguments,
annotate the corresponding parameter with L. (Nothing can
be gained from annotating it polymorphically.)

• If a closed-scope HOF may be applied to both dead and
live arguments, annotate the corresponding parameter
polymorphically. (Avoids poisoning.)

17 | March 27, 2010 LDTA 2010



Minimal Typing Derivations

• A typing derivation for a given expression is minimal if no
other derivation for the same expression and typing would
avoid type abstractions where the derivation under
consideration could not (Bjørner, ML 1994).

• Type-driven polyvariant program transformations are best
implemented with algorithms that compute MTDs rather
than standard algorithms such as Algorithm W.

18 | March 27, 2010 LDTA 2010



Flexibility w.r.t. Modularity

• For having transformations being driven by minimal typing
derivations, it doesn’t matter what exactly constitutes a
module.
• A module can be a single function, a binding group, a

source file, a package, a whole program, . . .

• Even when performing a whole-program analysis, minimal
typing deriviations play an important rôle in avoiding
poisoning.

19 | March 27, 2010 LDTA 2010



What’s in the Paper?

• A complete formulation of a type-driven dead-code
eliminator.

• Examples.
• Metatheory: principal solutions rather than principal types

give a notion of “best” transformations.

• Not in the paper:
• A one-pass algorithm for dead-code elimination. (Bjørner’s

algorithm requires two passes.)

20 | March 27, 2010 LDTA 2010


