

Spreading the Joy

Making "Stricterness" More Relevant

Stefan Holdermans (Joint work with Jurriaan Hage)

Dept. of Information and Computing Sciences, Utrecht University P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Web pages: http://people.cs.uu.nl/stefan/

Software Technology Colloquium June 18, 2009

The need for strictness analysis

Advantages of lazy evaluation: infinite data structures, custom control structures, avoiding unnecessary computations, program optimisations, ... (Hughes 1989, ...).

Huge disadvantage: inefficiency.

Strictness analysis: identify as many function applications as possible that can be safely evaluated eagerly rather than lazily.

Safely: without changing the meaning of a program.

Limitations of strictness analysis

- Strictness analyses are necessarily conservative: if a function cannot be guaranteed to be strict, it is treated as nonstrict. ("Err on the safe side.")
- Moreover: many functions are "nearly" strict, but not quite. Strictness analysers have to classify them as nonstrict.

Countermeasure: lazy languages give the programmer a means to selectively make functions stricter.

Strictness annotations

Haskell provides a primitive function

$$seq :: \alpha \to \beta \to \beta$$

that first forces its first argument to weak-head normal form and then returns its second argument.

Making functions stricter

Compare

$$const :: \frac{\alpha}{\alpha} \to \frac{\beta}{\beta} \to \frac{\alpha}{\alpha}$$
$$const \ x \ y = x$$

with

$$const' :: \alpha \to \beta \to \alpha$$

 $const' \ x \ y = y \ `seq` \ x$

While *const* is strict only in its first argument (and lazy in its second), *const'* is strict in both its arguments.

◆□▶◆御▶◆団▶◆団▶ 団 めの◎

Propagating stricterness

Of course, stricterness propagates:

```
force :: \alpha \rightarrow ()
force x = const'() x
```

Strict application

With seq, we can define a custom operator for strict function application:

$$(\$!) :: (\alpha \to \beta) \to \alpha \to \beta$$

$$f \$! \ x = x \text{ 'seq' } f \ x$$

For example:

$$\begin{array}{cccc} const \; () & \bot & & \Downarrow & \; () \\ const \; () \; \$! \; \bot & & \bot & \end{array}$$

Semantic peculiarities

Using seq, we can tell \bot and $(\lambda x \to \bot)$ apart:

$$\begin{array}{cccc} \bot & `seq`() & & \Downarrow & & \bot \\ (\lambda x \to \bot) `seq`() & & \Downarrow & () \end{array}$$

Dealing with strictness annotations

When reasoning about programs and implementing compiler optimisations, one has to be aware of the semantic implications of having seq in the language:

- Parametricity does not hold.
- Fold-build fusion is invalid.
- **...**
- ► See Danielsson et al. (2006), Van Eekelen and De Mol (2006), Johann and Voigtländer (2006), . . .

What about strictness analysis?

Outline

- Relevant Typing
- Naïve Refinements
- Our Approach

Relevant Typing

Relevant typing

- Strictness analysis by means of a nonstandard (annotated) type system.
- ► Type-based approach to keeping track of neededness (Barendregt et al. 1987).
- Neededness (intensional) used to approximate strictness (extensional).
- Through a Curry-Howard lens: connection with (substructural) relevant logic.
- See Wright (1991), Baker-Finch (1992), Amtoft (1993), Benton (1996), . . .

Typing rules

$$\frac{}{\Gamma \vdash n :: \mathsf{Int}} \ [\mathit{const}]$$

$$\frac{}{\Gamma \vdash \bot :: \tau}$$
 [bot]

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x :: \tau} [var]$$

$$\frac{\Gamma + [x \mapsto \tau_1] \vdash t_1 :: \tau_2}{\Gamma \vdash \lambda x \to t_1 :: \tau_1 \to \tau_2} [lam]$$

$$\frac{\Gamma \vdash t_1 :: \tau_2 \to \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash t_1 \ t_2 :: \tau} [app]$$

Careful context management

$$\overline{[] \vdash n :: \mathsf{Int}}$$
 [const]

$$\frac{}{[] \vdash \bot :: \tau}$$
 [bot]

$$\frac{}{[x \mapsto \tau] \vdash x :: \tau} [var]$$

Substructural typing rule

Weakening:

$$\frac{\Gamma_1 + \Gamma_2 \vdash t :: \tau}{\Gamma_1 + + [x \mapsto \tau_0] + + \Gamma_2 \vdash t :: \tau} [\textit{weak}]$$

Annotated types

Decorate function types with an annotation $\varphi \in \{S, L\}$:

- ▶ $\tau_1 \xrightarrow{S} \tau_2$ for relevant (strict) abstractions.
- ▶ $\tau_1 \xrightarrow{L} \tau_2$ for uncommitted (lazy) abstractions.

Relevance typing: constants and variables

$$\frac{1}{[] \vdash n :: \mathsf{Int}^{\varphi}} [const]$$

$$\frac{}{[\,]\vdash \bot :: {\color{red} \tau^{\varphi}}} \; [\mathit{bot}]$$

$$\frac{}{[x\mapsto {\pmb{\tau}}^\varphi]\vdash x::{\pmb{\tau}}^\varphi} \ [\mathit{var}]$$

Relevance typing: functions

Function bodies are analysed as if functions are always needed:

$$\frac{\varphi \triangleright \Gamma \quad \Gamma + [x \mapsto \tau_1^{\varphi_1}] \vdash t_1 :: \tau_2^{\mathsf{S}}}{\Gamma \vdash \lambda x \to t_1 :: (\tau_1 \xrightarrow{\varphi_1} \tau_2)^{\varphi}} \text{ [lam]}$$

Containment constraint: $\varphi \triangleright \Gamma$ iff $\forall (x \mapsto \tau_0^{\varphi_0}) \in \Gamma$. $\varphi \sqsubseteq \varphi_0$.

Relevance typing: applications

In an application, a variable is needed if it is needed in either the function or the argument (or in both):

$$\frac{\Gamma_1 \vdash t_1 :: (\tau_2 \xrightarrow{\varphi_1} \tau)^{\varphi} \quad \Gamma_2 \vdash t_2 :: \tau_2^{\varphi \sqcup \varphi_1}}{\Gamma_1 \sqcap \Gamma_2 \vdash t_1 \ t_2 :: \tau^{\varphi}} \text{ [app]}$$

Least upper bound: $\varphi \sqcup \varphi_1 = S$ iff $\varphi = \varphi_1 = S$.

Context splitting: $\Gamma = \Gamma_1 \sqcap \Gamma_2$ iff Γ is the pointwise meet of Γ_1 and Γ_2 .

Relevance typing: substructural rule

Only L-annotated bindings can be discarded:

$$\frac{\Gamma_1 \# \Gamma_2 \vdash t :: \tau^{\varphi}}{\Gamma_1 \# [x \mapsto {\tau_0}^{\mathsf{L}}] \# \Gamma_2 \vdash t :: \tau^{\varphi}} \text{ [weak]}$$

Call-by-value transformation

If $t_1 :: \underline{\tau_2} \xrightarrow{S} \underline{\tau}$ and $t_2 :: \underline{\tau_2}$, then $t_1 \ t_2$ is transformed into $t_1 \$! \ t_2$.

Correctness: if t is transformed into t' and $t \Downarrow v$, then $t' \Downarrow v'$ with $v' \leqslant_{\$!} v$.

In particular: if $v \not\equiv \bot$, then $v' \not\equiv \bot$.

What about strictness annotations?

If we want to deal with strictness annotations in source programs, we have to give relevant typing rules for seq.

Or—take \$! as a primitive and derive seq as a library function:

$$seq :: \alpha \to \beta \to \beta$$

$$seq \ x = const \ id \ \$! \ x$$

Objective: sound and effective analysis in the presence of strict application.

Naïve Refinements

A simple rule for strict application

It is tempting to define:

$$\frac{\Gamma_1 \vdash t_1 :: (\tau_2 \xrightarrow{\varphi_1} \tau)^{\varphi} \quad \Gamma_2 \vdash t_2 :: \tau_2^{\varphi}}{\Gamma_1 \sqcap \Gamma_2 \vdash t_1 \$! \ t_2 :: \tau^{\varphi}} \ [\textit{strict-app}]$$

 \square Here, we discard the relevance φ_1 of the function.

Problem

$$f \ x = const \ () \ \$! \ (\setminus_{-} \to x)$$

Note: f is lazy in its argument x, i.e., $f \perp \psi$ ().

Still:

- ▶ The body of *f* is analysed as if it is needed.
- The argument (_→ x) of the strict application is analysed as if it is needed (i.e., the laziness of const () is discarded).
- ▶ The containment constraint for $(\setminus _ \to x)$ is satisfied trivially.
- ▶ The body of $(\setminus _ \to x)$ is typed as if it is needed.
- ► x is needed and, hence, $f :: \alpha \xrightarrow{S} ()!!$

igorplus igoplus igoplus

A less ambitious rule

$$\frac{\Gamma_1 \vdash t_1 :: (\tau_2 \xrightarrow{\varphi_1} \tau)^{\varphi} \quad \Gamma_2 \vdash t_2 :: \tau_2^{\varphi_1 \sqcup \varphi}}{\Gamma_1 \sqcap \Gamma_2 \vdash t_1 \$! \ t_2 :: \tau^{\varphi}} [\textit{strict-app}]$$

Here, we type strict application as lazy application.

But then stricterness does not propagate and both

$$const' \ x \ y = const \ x \$$
\$! y

and

$$force \ x = const'() \ x$$

are typed as if they were lazy.

Our Approach

Relevant typing: hidden assumption

Without *seq* (or \$!), the only way to force a function to weak-head normal form is by applying it to an argument.

Hence, there is no essential difference between \bot and $\lambda x \to \bot$.

This shows in the containment constraint: if a function is needed, the variables that are needed in its body are needed as well.

But with seq, a function can be forced without being applied!

Keeping track of applicativeness

Main idea:

In addition to neededness, we also keep track of which terms are guaranteed to be used as functions, i.e., applied to arguments.

We reuse the lattice $\{S, L\}$ with $S \sqsubset L$:

- S for applicative terms.
- L for remaining terms.

Metavariable convention: φ for neededness and ψ for applicativeness.

Typing judgements now read: $\Gamma \vdash t : \tau^{(\varphi,\psi)}$.

Refined relevance typing: constants and variables

$$\overline{[\,] \vdash n :: \mathsf{Int}^{(\varphi,\mathsf{L})}} \ [\mathit{const}]$$

$$\frac{}{[\,]\vdash\bot::\pmb{\tau}^{(\varphi,\psi)}}\;[\textit{bot}]$$

$$\overline{[x\mapsto \pmb{\tau}^{(\varphi,\psi)}]\vdash x::\pmb{\tau}^{(\varphi,\psi)}} \ [\textit{var}]$$

Refined relevance typing: functions

$$\frac{\psi \triangleright \Gamma \quad \Gamma + [x \mapsto \tau_1^{(\varphi_1, \psi_1)}] \vdash t_1 :: \tau_2^{(\varsigma, \psi_2)}}{\Gamma \vdash \lambda x \to t_1 :: (\tau_1^{\psi_1} \xrightarrow{\varphi_1} \tau_2^{\psi_2})^{(\varphi, \psi)}} [lam]$$

The containment constraint is now dominated by the applicativeness of the function rather than its neededness.

Applicativeness implies neededness: $\varphi \sqsubseteq \psi$.

Refined relevance typing: applications

$$\frac{\Gamma_1 \vdash t_1 :: (\tau_2^{\psi_2} \xrightarrow{\varphi_1} \tau^{\psi})^{(\varphi,\varphi)} \quad \Gamma_2 \vdash t_2 :: \tau_2^{(\varphi \sqcup \varphi_1, \varphi \sqcup \psi_2)}}{\Gamma_1 \sqcap \Gamma_2 \vdash t_1 \ t_2 :: \tau^{(\varphi,\psi)}} \ \text{[app]}$$

Applicativeness now participates in the pointwise meet $\Gamma_1 \sqcap \Gamma_2$ as well.

$$\frac{\Gamma_1 \vdash t_1 :: (\tau_2^{\psi_2} \xrightarrow{\varphi_1} \tau^{\psi})^{(\varphi,\varphi)} \quad \Gamma_2 \vdash t_2 :: \tau_2^{(\varphi,\varphi \sqcup \psi_2)}}{\Gamma_1 \sqcap \Gamma_2 \vdash t_1 \$! \ t_2 :: \tau^{(\varphi,\psi)}} \ [\textit{strict-app}]$$

The relevenance φ_1 of the function is completely discarded.

[Faculty of Science Information and Computing Sciences]

Refined relevance typing: substructural rule

Only (L, L)-annotated bindings can be discarded:

$$\frac{\Gamma_1 + \Gamma_2 \vdash t :: \boldsymbol{\tau}^{(\varphi,\psi)}}{\Gamma_1 + \left[x \mapsto \boldsymbol{\tau_0}^{(\mathsf{L},\mathsf{L})}\right] + \Gamma_2 \vdash t :: \boldsymbol{\tau}^{(\varphi,\psi)}} \text{ [weak]}$$

Conclusions

- Adapting a relevant type system to have it take into account strictness annotations is a tricky business.
- Naïve approaches are easily unsound or ineffective.
- Incorporating a notion of applicativeness yields a solution that is both sound and effective.
- Future work: combine neededness and applicativeness into a single three-point lattice.

