[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Spreading the Joy
Making “Stricterness” More Relevant

Stefan Holdermans
(Joint work with Jurriaan Hage)

Dept. of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
E-mail: stefan@cs.uu.nl
Web pages: http://people.cs.uu.nl/stefan/

Software Technology Colloquium
June 18, 2009

stefan@cs.uu.nl
http://people.cs.uu.nl/stefan/

The need for strictness analysis

Advantages of lazy evaluation: infinite data structures,
custom control structures, avoiding unnecessary
computations, program optimisations, ...

(Hughes 1989, ...).

Huge disadvantage: inefficiency.

Strictness analysis: identify as many function applications as
possible that can be safely evaluated eagerly rather than
lazily.

iz” Safely: without changing the meaning of a program.

SaN
7

=N § Universiteit Utrecht Information and Computing Sciences]
N

*\\\‘Wf/}) [Faculty of Science
U

2

3

Limitations of stricthess analysis

» Strictness analyses are necessarily conservative: if a
function cannot be guaranteed to be strict, it is treated
as nonstrict. (“Err on the safe side.”)

» Moreover: many functions are “nearly” strict, but not
quite. Strictness analysers have to classify them as
nonstrict.

Countermeasure: lazy languages give the programmer a
means to selectively make functions stricter.

; N) % Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
KNy

Strictness annotations

Haskell provides a primitive function

‘seq::a—)b’—)ﬁ ‘

that first forces its first argument to weak-head normal form
and then returns its second argument.

Q ﬁ)é [Faculty of Science
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

4

Making functions stricter

Compare

const a0 — [— «
const ty ==z

with

const' o — B — «
const' T y =1y ‘seq‘ x

iz~ While const is strict only in its first argument (and lazy in
its second), const’ is strict in both its arguments.

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

5|

Propagating stricterness

Of course, stricterness propagates:

force :: v — ()

force © = const’ ()

IF" force is strict, because const’ is.

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Strict application

With seq, we can define a custom operator for strict function
application:

u(a—=p)—a—p
f$'z=x‘seqfzx

For example:
const () L [} ()
const () $! L (8 L
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(] [= =

DEE

Semantic peculiarities

Using seq, we can tell L and (Az — L) apart:

L 'segt () 4 L
Az = L)'seg() ¥ 0

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

(] [= =

DEE

Dealing with strictness annotations

When reasoning about programs and implementing compiler
optimisations, one has to be aware of the semantic
implications of having seq in the language:

v

Parametricity does not hold.
Fold-build fusion is invalid.

v

v

See Danielsson et al. (2006), Van Eekelen and
De Mol (2006), Johann and Voigtlander (2006), . ..

What about strictness analysis?

5&\\“% [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]

9 %{ﬂ@

Outline

» Relevant Typing
» Naive Refinements
» Our Approach

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Relevant Typing

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Relevant typing

» Strictness analysis by means of a nonstandard
(annotated) type system.

» Type-based approach to keeping track of neededness
(Barendregt et al. 1987).

» Neededness (intensional) used to approximate
strictness (extensional).

» Through a Curry-Howard lens: connection with
(substructural) relevant logic.

» See Wright (1991), Baker-Finch (1992), Amtoft (1993),
Benton (1996), . ..

5&\\“% [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
A

12 %{AL\%

Typing rules

—— [const]
I'En:int

—— [bof]
Il = L s2 77

I(z)="71

'zt [var]

FHz—7|kFtan
I'FAz > 41 =

[lam]

I'tHom—7 TTHEHum
'ttt

[app]

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Careful context management

[[Fn

const
xlnt[]

[[FL

[bot]
co T

[xl—)T]F‘xiiT[vad

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Substructural typing rule

Weakening:

'y HITeykter
Iy H[z— 7] HTekFtuT

[weak]

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(] [= =

DEE

Annotated types

Decorate function types with an annotation o € {S,L}:

s : .
» 7 = 1y for relevant (strict) abstractions.

> 7y L 79 for uncommitted (lazy) abstractions.

IZ- S and L constitute a two-point lattice with S C L.

5&\\“’%}) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
16 K

Relevance typing: constants and variables

[[F n:int? [const]

0F Luge 201

[z 7P| FxT? [var]

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Relevance typing: functions

Function bodies are analysed as if functions are always
needed:

o>l TH[z— 1Pt on
[lam]

CEAz =t (7 ﬂm'g)“’

Containment constraint: ¢ > I iff V(z — 79¥°) € I". ¢ C ¢y.

1 Recall: S L.

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

18

Relevance typing: applications

In an application, a variable is needed if it is needed in either
the function or the argument (or in both):

'kt (7‘2—)7’)90 [y F g mpPHet

a
IiNlo bkt t:7? [app)

Least upper bound: ¢ LI p; =Siiff p = p; =S.

Context splitting: I' = I'; M 'y iff I is the pointwise meet of T,
and I's.

\\\‘Wﬁ' [Faculty of Science

=V = S Universiteit Utrecht Information and Computing Sciences]

19 %ﬂ!“

Relevance typing: substructural rule

Only L-annotated bindings can be discarded:

' Ik ter?
I’1-|+[:vl—>7'0L]—|+F2|—t::T‘P

[weak]

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(] (= = =

DEE

Call-by-value transformation

If t1::70 > and o170, then t; to is transformed into ¢ $! t,.

Correctness: if ¢ is transformed into ¢ and ¢ || v, then ¢’ || v/
with v’ <$! V.

1F" In particular: if v £ 1, then v’ # L.

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

21

What about strictness annotations?

If we want to deal with strictness annotations in source
programs, we have to give relevant typing rules for seq.

Or—take $! as a primitive and derive seq as a library function:

seq:ia— B —f3
seq x = const id $! x

1z~ Objective: sound and effective analysis in the presence
of strict application.

5&\\“’%}) [Faculty of Science
= B = Universiteit Utrecht Information and Computing Sciences]

=
22 N

Naive Refinements

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

A simple rule for strict application

It is tempting to define:

Ikt (m ﬂ)7’)5" Ty tg it ¥
DTy -t $ ity 7?

[strict-app]

1=~ Here, we discard the relevance ¢; of the function.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(] [= =

DEE

Problem

| f @ = const () $! (\- = z)

Note: f is lazy in its argument z, i.e., f L |} ().

Still:

> The body of f is analysed as if it is needed.

> The argument (\- — z) of the strict application is analysed as if it is
needed (i.e., the laziness of const () is discarded).

> The containment constraint for (\- — z) is satisfied trivially.
> The body of (\- — z) is typed as if it is needed.

» 1 is needed and, hence, f :: o > on
1= But then the resulting transformation is unsound: f $! 1 | L.

= o S q . .
N) % Universiteit Utrecht Information and Computing Sciences]

:SWW/) [Faculty of Science
25 KN\

A less ambitious rule

I Et(m ﬂ>7’)9" [y F tg i P19

DiMTy -t $ 79 [strict-app]

1= Here, we type strict application as lazy application.

But then stricterness does not propagate and both

‘ const’ © y = const z $!y ‘

and

| force z = const’ () x |

are typed as if they were lazy.

;&\\‘Wﬁ)‘ [Faculty of Science
= =< B Cypy . . .
= &) % Universiteit Utrecht Information and Computing Sciences]
N

26 ’

Our Approach

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Relevant typing: hidden assumption

Without seq (or $!), the only way to force a function to
weak-head normal form is by applying it to an argument.

Hence, there is no essential difference between L. and Az — L.

This shows in the containment constraint: if a function is
needed, the variables that are needed in its body are
needed as well.

But with seq, a function can be forced without being

applied!
5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]

=
28 N

29

%

Keeping track of applicativeness

Main idea:

In addition to neededness, we also keep track of which
terms are guaranteed to be used as functions, i.e., applied
to arguments.

We reuse the lattice {S,L} with S C L:

» S for applicative terms.
» L for remaining terms.

Metavariable convention: ¢ for neededness and v for applicativeness.

Typing judgements now read: I' - ¢ : 7(¥¥),

\‘Wﬁ,; [Faculty of Science
U§ Universiteit Utrecht Information and Computing Sciences]
AY

7

Refined relevance typing: constants and
variables

[F n::Intlb) [

[]F L () [bot]

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Refined relevance typing: functions

Yo T H [z ner¥)] kg nSv)

o1 [fam]
LAz =t (n? _>7—2¢2)(50,¢)

The containment constraint is now dominated by the
applicativeness of the function rather than its
neededness.

1= Applicativeness implies neededness: ¢ C 1.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences
7 NS

31 NS

32

Refined relevance typing: applications

IR (o P 7—11})(%0) Iy - to:: 7-2(90|—’$01750U¢2) (0]
Iy 4ty i (%)

Applicativeness now participates in the pointwise meet
'y as well.

Ty kg (Y2 25 79)(@09) Ty gy o plewtvs)
[Ny Fty $! ity 7(e¥)

[strict-app]

== The relevenance ¢; of the function is completely dis-

carded.
\\\‘Wﬁ' [Faculty of Science

=V = S Universiteit Utrecht Information and Computing Sciences]

KN

Relfined relevance typing: substructural
rule

Only (L, L)-annotated bindings can be discarded:

't #H Tyt 7(0¥)
Ty 4 [z 700D # Ty b ¢ led

) [weak]

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Conclusions

» Adapting a relevant type system to have it take into
account strictness annotations is a tricky business.
» Naive approaches are easily unsound or ineffective.

» Incorporating a notion of applicativeness yields a
solution that is both sound and effective.

» Future work: combine neededness and applicativeness
into a single three-point lattice.

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]

34 N

	Relevant Typing
	Naïve Refinements
	Our Approach

