
[Faculty of Science
Information and Computing Sciences]

Spreading the Joy
Making “Stricterness” More Relevant

Stefan Holdermans
(Joint work with Jurriaan Hage)

Dept. of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

E-mail: stefan@cs.uu.nl
Web pages: http://people.cs.uu.nl/stefan/

Software Technology Colloquium
June 18, 2009

stefan@cs.uu.nl
http://people.cs.uu.nl/stefan/

[Faculty of Science
Information and Computing Sciences]

2

The need for strictness analysis

Advantages of lazy evaluation: infinite data structures,
custom control structures, avoiding unnecessary
computations, program optimisations, . . .
(Hughes 1989, . . .).

Huge disadvantage: inefficiency.

Strictness analysis: identify as many function applications as
possible that can be safely evaluated eagerly rather than
lazily.

� Safely: without changing the meaning of a program.

[Faculty of Science
Information and Computing Sciences]

3

Limitations of strictness analysis

I Strictness analyses are necessarily conservative: if a
function cannot be guaranteed to be strict, it is treated
as nonstrict. (“Err on the safe side.”)

I Moreover: many functions are “nearly” strict, but not
quite. Strictness analysers have to classify them as
nonstrict.

Countermeasure: lazy languages give the programmer a
means to selectively make functions stricter.

[Faculty of Science
Information and Computing Sciences]

4

Strictness annotations

Haskell provides a primitive function

seq :: α→ β → β

that first forces its first argument to weak-head normal form
and then returns its second argument.

[Faculty of Science
Information and Computing Sciences]

5

Making functions stricter

Compare

const :: α→ β → α
const x y = x

with

const ′ :: α→ β → α
const ′ x y = y ‘seq ‘ x

� While const is strict only in its first argument (and lazy in
its second), const ′ is strict in both its arguments.

[Faculty of Science
Information and Computing Sciences]

6

Propagating stricterness

Of course, stricterness propagates:

force :: α→ ()
force x = const ′ () x

� force is strict, because const ′ is.

[Faculty of Science
Information and Computing Sciences]

7

Strict application

With seq , we can define a custom operator for strict function
application:

($!) :: (α→ β)→ α→ β
f $! x = x ‘seq ‘ f x

For example:

const () ⊥ ⇓ ()
const () $!⊥ ⇓ ⊥

[Faculty of Science
Information and Computing Sciences]

8

Semantic peculiarities

Using seq , we can tell ⊥ and (λx → ⊥) apart:

⊥ ‘seq ‘ () ⇓ ⊥
(λx → ⊥) ‘seq ‘ () ⇓ ()

[Faculty of Science
Information and Computing Sciences]

9

Dealing with strictness annotations

When reasoning about programs and implementing compiler
optimisations, one has to be aware of the semantic
implications of having seq in the language:

I Parametricity does not hold.
I Fold-build fusion is invalid.
I . . .

I See Danielsson et al. (2006), Van Eekelen and
De Mol (2006), Johann and Voigtländer (2006), . . .

What about strictness analysis?

[Faculty of Science
Information and Computing Sciences]

10

Outline

I Relevant Typing
I Naı̈ve Refinements
I Our Approach

[Faculty of Science
Information and Computing Sciences]

11

Relevant Typing

[Faculty of Science
Information and Computing Sciences]

12

Relevant typing

I Strictness analysis by means of a nonstandard
(annotated) type system.

I Type-based approach to keeping track of neededness
(Barendregt et al. 1987).

I Neededness (intensional) used to approximate
strictness (extensional).

I Through a Curry-Howard lens: connection with
(substructural) relevant logic.

I See Wright (1991), Baker-Finch (1992), Amtoft (1993),
Benton (1996), . . .

[Faculty of Science
Information and Computing Sciences]

13

Typing rules

Γ ` n :: Int
[const]

Γ ` ⊥ :: τ
[bot]

Γ(x) = τ

Γ ` x :: τ
[var]

Γ ++ [x 7→ τ1] ` t1 :: τ2

Γ ` λx → t1 :: τ1 → τ2
[lam]

Γ ` t1 :: τ2 → τ Γ ` t2 :: τ2

Γ ` t1 t2 :: τ
[app]

[Faculty of Science
Information and Computing Sciences]

14

Careful context management

[] ` n :: Int
[const]

[] ` ⊥ :: τ
[bot]

[x 7→ τ] ` x :: τ
[var]

[Faculty of Science
Information and Computing Sciences]

15

Substructural typing rule

Weakening:

Γ1 ++ Γ2 ` t :: τ

Γ1 ++ [x 7→ τ0] ++ Γ2 ` t :: τ
[weak]

[Faculty of Science
Information and Computing Sciences]

16

Annotated types

Decorate function types with an annotation ϕ ∈ {S, L}:

I τ1
S−→ τ2 for relevant (strict) abstractions.

I τ1
L−→ τ2 for uncommitted (lazy) abstractions.

� S and L constitute a two-point lattice with S @ L.

[Faculty of Science
Information and Computing Sciences]

17

Relevance typing: constants and variables

[] ` n :: Intϕ
[const]

[] ` ⊥ :: τϕ
[bot]

[x 7→ τϕ] ` x :: τϕ
[var]

[Faculty of Science
Information and Computing Sciences]

18

Relevance typing: functions

Function bodies are analysed as if functions are always
needed:

ϕ . Γ Γ ++ [x 7→ τ1
ϕ1] ` t1 :: τ2

S

Γ ` λx → t1 :: (τ1
ϕ1−→ τ2)

ϕ
[lam]

Containment constraint: ϕ . Γ iff ∀(x 7→ τ0
ϕ0) ∈ Γ. ϕ v ϕ0.

� Recall: S @ L.

[Faculty of Science
Information and Computing Sciences]

19

Relevance typing: applications

In an application, a variable is needed if it is needed in either
the function or the argument (or in both):

Γ1 ` t1 :: (τ2
ϕ1−→ τ)ϕ Γ2 ` t2 :: τ2

ϕtϕ1

Γ1 u Γ2 ` t1 t2 :: τϕ
[app]

Least upper bound: ϕ t ϕ1 = S iff ϕ = ϕ1 = S.

Context splitting: Γ = Γ1 u Γ2 iff Γ is the pointwise meet of Γ1

and Γ2.

[Faculty of Science
Information and Computing Sciences]

20

Relevance typing: substructural rule

Only L-annotated bindings can be discarded:

Γ1 ++ Γ2 ` t :: τϕ

Γ1 ++ [x 7→ τ0
L] ++ Γ2 ` t :: τϕ

[weak]

[Faculty of Science
Information and Computing Sciences]

21

Call-by-value transformation

If t1 ::τ2
S−→ τ and t2 ::τ2, then t1 t2 is transformed into t1$!t2.

Correctness: if t is transformed into t ′ and t ⇓ v , then t ′ ⇓ v ′

with v ′ 6$! v .

� In particular: if v 6≡ ⊥, then v ′ 6≡ ⊥.

[Faculty of Science
Information and Computing Sciences]

22

What about strictness annotations?

If we want to deal with strictness annotations in source
programs, we have to give relevant typing rules for seq .

Or—take $! as a primitive and derive seq as a library function:

seq :: α→ β → β
seq x = const id $! x

� Objective: sound and effective analysis in the presence
of strict application.

[Faculty of Science
Information and Computing Sciences]

23

Naı̈ve Refinements

[Faculty of Science
Information and Computing Sciences]

24

A simple rule for strict application

It is tempting to define:

Γ1 ` t1 :: (τ2
ϕ1−→ τ)ϕ Γ2 ` t2 :: τ2

ϕ

Γ1 u Γ2 ` t1 $! t2 :: τϕ
[strict-app]

� Here, we discard the relevance ϕ1 of the function.

[Faculty of Science
Information and Computing Sciences]

25

Problem

f x = const () $! (\ → x)

Note: f is lazy in its argument x , i.e., f ⊥ ⇓ ().

Still:

I The body of f is analysed as if it is needed.
I The argument (\ → x) of the strict application is analysed as if it is

needed (i.e., the laziness of const () is discarded).
I The containment constraint for (\ → x) is satisfied trivially.
I The body of (\ → x) is typed as if it is needed.

I x is needed and, hence, f :: α
S−→ ()!!

�
But then the resulting transformation is unsound: f $!⊥ ⇓ ⊥.

[Faculty of Science
Information and Computing Sciences]

26

A less ambitious rule

Γ1 ` t1 :: (τ2
ϕ1−→ τ)ϕ Γ2 ` t2 :: τ2

ϕ1tϕ

Γ1 u Γ2 ` t1 $! t2 :: τϕ
[strict-app]

� Here, we type strict application as lazy application.

But then stricterness does not propagate and both

const ′ x y = const x $! y

and

force x = const ′ () x

are typed as if they were lazy.

[Faculty of Science
Information and Computing Sciences]

27

Our Approach

[Faculty of Science
Information and Computing Sciences]

28

Relevant typing: hidden assumption

Without seq (or $!), the only way to force a function to
weak-head normal form is by applying it to an argument.

Hence, there is no essential difference between ⊥ and λx → ⊥.

This shows in the containment constraint: if a function is
needed, the variables that are needed in its body are
needed as well.

But with seq , a function can be forced without being
applied!

[Faculty of Science
Information and Computing Sciences]

29

Keeping track of applicativeness

Main idea:

In addition to neededness, we also keep track of which
terms are guaranteed to be used as functions, i.e., applied
to arguments.

We reuse the lattice {S, L} with S @ L:

I S for applicative terms.
I L for remaining terms.

Metavariable convention: ϕ for neededness and ψ for applicativeness.

Typing judgements now read: Γ ` t : τ (ϕ,ψ).

[Faculty of Science
Information and Computing Sciences]

30

Refined relevance typing: constants and
variables

[] ` n :: Int(ϕ,L)
[const]

[] ` ⊥ :: τ (ϕ,ψ)
[bot]

[x 7→ τ (ϕ,ψ)] ` x :: τ (ϕ,ψ)
[var]

[Faculty of Science
Information and Computing Sciences]

31

Refined relevance typing: functions

ψ . Γ Γ ++ [x 7→ τ1
(ϕ1,ψ1)] ` t1 :: τ2

(S,ψ2)

Γ ` λx → t1 :: (τ1
ψ1

ϕ1−→ τ2
ψ2)(ϕ,ψ)

[lam]

The containment constraint is now dominated by the
applicativeness of the function rather than its
neededness.

� Applicativeness implies neededness: ϕ v ψ.

[Faculty of Science
Information and Computing Sciences]

32

Refined relevance typing: applications

Γ1 ` t1 :: (τ2
ψ2

ϕ1−→ τψ)(ϕ,ϕ) Γ2 ` t2 :: τ2
(ϕtϕ1,ϕtψ2)

Γ1 u Γ2 ` t1 t2 :: τ (ϕ,ψ)
[app]

Applicativeness now participates in the pointwise meet
Γ1 u Γ2 as well.

Γ1 ` t1 :: (τ2
ψ2

ϕ1−→ τψ)(ϕ,ϕ) Γ2 ` t2 :: τ2
(ϕ,ϕtψ2)

Γ1 u Γ2 ` t1 $! t2 :: τ (ϕ,ψ)
[strict-app]

� The relevenance ϕ1 of the function is completely dis-
carded.

[Faculty of Science
Information and Computing Sciences]

33

Refined relevance typing: substructural
rule

Only (L, L)-annotated bindings can be discarded:

Γ1 ++ Γ2 ` t :: τ (ϕ,ψ)

Γ1 ++ [x 7→ τ0
(L,L)] ++ Γ2 ` t :: τ (ϕ,ψ)

[weak]

[Faculty of Science
Information and Computing Sciences]

34

Conclusions

I Adapting a relevant type system to have it take into
account strictness annotations is a tricky business.

I Naı̈ve approaches are easily unsound or ineffective.
I Incorporating a notion of applicativeness yields a

solution that is both sound and effective.

I Future work: combine neededness and applicativeness
into a single three-point lattice.

	Relevant Typing
	Naïve Refinements
	Our Approach

