
[Faculty of Science
Information and Computing Sciences]

Making “Stricterness” More Relevant

Stefan Holdermans
(Joint work with Jurriaan Hage)

Dept. of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

E-mail: stefan@cs.uu.nl
Web pages: http://people.cs.uu.nl/stefan/

PEPM 2010
January 19, 2010

stefan@cs.uu.nl
http://people.cs.uu.nl/stefan/

[Faculty of Science
Information and Computing Sciences]

2

What is “stricterness”?

Making Haskell programs more strict by using the built-in
function seq ,

seq :: α→ β → β

which forces the evaluation of its first argument:

seq x y =

{
⊥ if x = ⊥,
y otherwise

� Evaluation: reducing a term to weak-head normal form.

[Faculty of Science
Information and Computing Sciences]

3

Example: a stricter const

const , const ′ :: α→ β → α

const x y = x -- strict in x, lazy in y
const ′ x y = seq y x -- strict in x and y

Interactive session:

Main > const π (error "¡Ayuda!")
3.141592653589793

Main > const ′ π (error "¡Ayuda!")
*** Exception: ¡Ayuda!

[Faculty of Science
Information and Computing Sciences]

4

Why do we have seq?

inefficient program

more efficient program more efficient program

strictness analysis
(preserves semantics)

annotate with seq
(may change semantics)

[Faculty of Science
Information and Computing Sciences]

5

Stricterness propagates

Stricterness propagates through function application:

force :: α→ ()
force x = const ′ () x

� const ′ is strict due to its use of seq , force is strict due to
its use of const ′.

In general: making a function stricter by means of seq , may
cause several other functions to become stricter as well.

[Faculty of Science
Information and Computing Sciences]

6

Taking advantage of seq?

inefficient program

more efficient program more efficient program

even more efficient program

strictness analysis
(preserves semantics)

annotate with seq
(may change semantics)

strictness analysis
(pick up on propagated stricterness?)

[Faculty of Science
Information and Computing Sciences]

7

Fun with seq

Without seq , we cannot tell λx → ⊥ and ⊥ apart.

But with seq , we can:

Main > seq ⊥ π
*** Exception: ⊥
Main > seq (λx → ⊥) π
3.141592653589793

� Evaluating a function: reducing it until a lambda appears
at top-level.

[Faculty of Science
Information and Computing Sciences]

8

Metaprogrammers should be seq-aware

The presence of seq asks for carefulness when reasoning
about Haskell programs or implementing compiler
optimisations: eta-equivalence does not hold, parametricity
does not hold, fold-build fusion is invalid, . . .

See Danielsson et al. (2006), Van Eekelen and De Mol (2006),
Johann and Voigtländer (2006), . . .

This talk: consequenses for strictness analysis by means of
relevance typing.

[Faculty of Science
Information and Computing Sciences]

9

Relevance typing

I Type-based analysis for keeping track of relevance.
I See Wright (1991), Baker-Finch (1992), Amtoft (1993),

Benton (1996), . . .
I Connections with relevance logics.

Key idea: A variable x is relevant to an expression e, if any
expression bound to x is guaranteed to be evaluated
whenever e is evaluated.

� Goal: for a given expression, identify as many relevant vari-
ables as possible.

[Faculty of Science
Information and Computing Sciences]

10

Refining function space

We use information about the relevance of variables to
determine whether or functions are strict.

Information about the strictness of functions is stored in their
types. We distinguish between

I strict function space, τ1
S−→ τ2, and

I (possibly) lazy function space, τ1
L−→ τ2.

� More appropriate: relevant function space, (possibly) irrele-
vant function space.

[Faculty of Science
Information and Computing Sciences]

11

Interaction between relevance and strictness

Strictness is determined by relevance and vice versa.

I If the formal parameter x of an abstraction λx → e is
relevant to its body e, then λx → e is strict (and, hence,
gets a type of the form τ1

S−→ τ2).
I If a function expression e1 is strict (i.e., has a type of the form

τ1
S−→ τ2), then all variables that are relevant to an

argument e2 are relevant to a function application e1 e2.

[Faculty of Science
Information and Computing Sciences]

12

Example: typing const

const :: α S−→ β
L−→ α

const x y = x

I x is relevant to x .
I y is irrelevant to x .

� Really: x is relevant to λy → x .

[Faculty of Science
Information and Computing Sciences]

13

Call-by-value transformation

With seq , we can define a call-by-value application:

($!) :: (α→ β)→ α→ β
f $! x = seq x (f x)

Idea: if a function expression e1 is strict (i.e., has a type of the
form τ1

S−→ τ2), replace all function applications e1 e2 by e1 $! e2.

[Faculty of Science
Information and Computing Sciences]

14

Example: transforming applications of const

Main > const (2 ∗ 3) 5
6

Main > :cbv const (2 ∗ 3) 5
(const $! (2 ∗ 3)) 5

Main > (const $! (2 ∗ 3)) 5
6

� Call-by-value transformation is semantics-preserving.

[Faculty of Science
Information and Computing Sciences]

15

Relevance typing is unsound for seq

Relevance typing crucially relies on the fact that functions
are only evaluated when applied to arguments.

With seq , this is no longer true:

I Functions are evaluated when applied to arguments.
I Functions are evaluated when passed to seq .

[Faculty of Science
Information and Computing Sciences]

16

Relevance w.r.t. lambda-abstractions

Without seq :

Variables (other than x) that are relevant to e are also
relevant to λx → e.

For example: x is relevant λy → x . (And, hence, λx → λy → x is
strict in x).

[Faculty of Science
Information and Computing Sciences]

17

Refined typing for seq

We expect:

seq :: α S−→ β
S−→ β

Then, we have:

($!) :: (α
γ−→ β) S−→ α

S−→ β
f $! x = seq x (f x)

[Faculty of Science
Information and Computing Sciences]

18

Example: passing functions to seq

Consider:

f :: α S−→ Float
f x = seq (λy → x) π

I x is relevant to λy → x .
I x is relevant to seq (λy → x) π (because seq is strict!).
I f is strict in x .

But is it?

[Faculty of Science
Information and Computing Sciences]

19

Example: passing functions to seq (cont’d)

f :: α S−→ Float
f x = seq (λy → x) π

Main > f ⊥
3.141592653589793

Main > :cbv f ⊥
f $!⊥
Main > f $!⊥
*** Exception: ⊥

� Call-by-value transformation is no longer semantics-
preserving.

[Faculty of Science
Information and Computing Sciences]

20

Nonsolution: a more conservative typing for seq

Considering seq to be lazy in its first argument:

seq :: α L−→ β
S−→ β

This renders relevance typing (and, hence, call-by-value
transformation) sound again.

However, we are not able to take advantage of stricterness
due to seq :

const ′ :: α S−→ β
L−→ α

const ′ x y = seq y x

force x :: α L−→ ()
force x = const ′ () x

[Faculty of Science
Information and Computing Sciences]

21

Solution: applicativeness

We need to distinguish between two uses of functions: being
applied to arguments, being passed to seq .

Idea: adapt the relevance type system so that it additionally
keeps track of which functions are guaranteed to be applied
to arguments.

[Faculty of Science
Information and Computing Sciences]

22

Relevance w.r.t. lambda-abstractions (revisited)

Without seq : variables (other than x) that are relevant to e
are also relevant to λx → e.

With seq : variables (other than x) that are relevant to e are
also relevant to λx → e, if λx → e is guaranteed to be
used applicatively.

For example: x is relevant to λy → x , only if λy → x is
(eventually) applied to an argument.

Hence, λx → λy → x is strict in x only if λx → λy → x is
(eventually) fully applied.

[Faculty of Science
Information and Computing Sciences]

23

Example: passing functions to seq (revisited)

Consider again:

f :: α L−→ Float
f x = seq (λy → x) π

I x is relevant to λy → x , if λy → x is eventually used
applicatively.

I x is relevant to seq (λy → x) π, if λy → x is eventually
used applicatively.

I But: λy → x is not used applicatively in the body of f .
I Hence, we cannot derive that f is strict in x .

[Faculty of Science
Information and Computing Sciences]

24

Taking advantage of stricterness

With applicativeness:

const ′ :: α S−→ β
S−→ β -- if const’ is (eventually) fully applied

const ′ x y = seq y x

(In the actual type system, the side condition is encoded in the type.)

force :: α S−→ ()
force x = const ′ () x

(Because const ′ is fully applied in the body of force.)

[Faculty of Science
Information and Computing Sciences]

25

What’s in the paper?

I Formalisation of relevance typing for a language without
seq .

I Call-by-value transformation into a language with seq .
I Adaptation of relevance typing for the language with seq .
I Adaptation of the call-by-value transformation.
I Algorithm.

I Related work.
I Future work.

[Faculty of Science
Information and Computing Sciences]

26

In summary

I Naı̈ve relevance typing is unsound in the presence of
seq .

I Easy to get it sound again, but at the expense of
missing out opportunities for call-by-value
transformation.

I Taking into account applicativeness yields a sound
transformation that does take advantage of stricterness.

