[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Polyvariant Flow Analysis with
Higher-ranked Polymorphic Types and
Higher-order Effect Operators

Jurriaan Hage
Joint work with Stefan Holdermans (Vector Fabrics)

Dept. of Information and Computing Sciences
Utrecht University
The Netherlands
E-mail: jur@cs.uu.nl

September 27, 2010



Type based program analysis

» Compilers for strongly typed functional languages need to
implement the intrinsic type system of the language.
> In TBPA:
» Other analyses take advantage of standardised concepts,

vocabulary, and implementation.
» Moreover, the (underlying) types lend structure to the

analysis.
ng’y)é 5 . . [Facul.ty of S'ciem:e
7{{{“1“% Universiteit Utrecht Information and Computing Sciences]
) A



Control-flow analysis

v

Control-flow analysis:

Determine for every expression, the locations
where its value may have been produced.

v

In type and effect systems: annotate types with analysis
information.
boollf12} describes

> a boolean value
» produced at either program location ¢; or ¢;.

v

» (booltl} — poo1{B1){&} describes
> a boolean-valued function produced at location /¢,
> that takes a value produced at /; and
> returns a value produced at ¢; or /3.
&\\Wi},; [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
3 N



imprecise control-flow analysis

h f =iff falsel thenf true® else false’
idx =x
main = hid

» h can have type (bool{612} — boo1tl:2}) — boo1thf2ts}

[Faculty of Science
= U F Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢



An imprecise control-flow analysis

h f =iff false’ thenf true” else false”
idx =x
main = h id

» h can have type (bool{/2} — boo1t6:2}) — boo1tl2:t3}
» id can have type booll{l12} — boo1lfrfa}

» Unacceptable:

> analysis is not modular: all uses of id must be known.
» other uses of id poisoned by effect of passing id to h

@W& [Faculty of Science
7‘@" §q Universiteit Utrecht Information and Computing Sciences]
4 AN



Let-polyvariance to the rescue

idx =x
h f =iff false’ thenf true” else false®,
main = h id

v

Let-defined and top-level identifiers identifiers can obtain a
context-sensitive, polyvariant type.

> h can now have type
V. (bool{el*[Z} — boolf) — boo1BUlG}

For h id, instantiate B to {/;,/,} to obtain bool {1263},
Uy.

v

» Improvement visible for & ctrue where ctrue z = true
boollf:4} instead of boolllif2:fa.la}

» Moreover, type of i independent of other calls to A.

&\\‘Wﬁ)) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
5 NS



Let-polyvariance to the rescue

idx =x
h f =iff false’ thenf true” else false®,
main = h id

» Let-defined and top-level identifiers identifiers can obtain a
context-sensitive, polyvariant type.

> h can now have type
V. (bool{gl’@} — boolf) — boo1BUlG}

» For hid, instantiate 3 to {/,¢,} to obtain boolllné2ts}

» Improvement visible for & ctrue where ctrue 7 = true's:

bool{%:4} instead of boollllafsla},
» Moreover, type of i independent of other calls to A.

» But there is still some poisoning left.

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

5



Higher-ranked polyvariance to finish the job

idx =x
h f =iff false’ thenf true” else false®,
main = h id

Type of main is bool {14263}

v

v

But: the value of ¢; never flows to result of A.

v

Poisoning still applies to different uses of f in A.
Why?

v

&) [Faculty of Science
% & § Universiteit Utrecht Information and Computing Sciences]



6

Higher-ranked polyvariance to finish the job

idx =x
h f =iff false!l thenf true’ else false®,
main = h id

v

Type of main is booll1-2:63}

v

But: the value of ¢; never flows to result of A.

» Poisoning still applies to different uses of f in hA.

v

Because f has to be assigned a monovariant type.

If  could have type VB.b001f — boo1P, then

» B ={/} for condition: does not propagate to result i id
» B ={{,} for then-part: propagates to result h id

v

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]



tral question

But can such types, annotated with flow-sets, be inferred?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢



But can such types, annotated with flow-sets, be inferred?

» Unassisted inference for higher-ranked polymorphism is
undecidable.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA



But can such types, annotated with flow-sets, be inferred?

» Unassisted inference for higher-ranked polymorphism is
undecidable.

» For control-flow analysis we much prefer not to assist.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA



Central question

But can such types, annotated with flow-sets, be inferred?

» Unassisted inference for higher-ranked polymorphism is
undecidable.

» For control-flow analysis we much prefer not to assist.

» But note that our types are not higher-ranked, only the
annotations are.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
7 NS



Our contributions

» Undecidability of inference for higher-order polymorphism
on types does not imply undecidability of inference for
higher-ranked annotations on (ordinary) types.

> Inspired by Dussart, Henglein and Mossin
» Type inference algorithm is remarkably like Damas and
Milner's algorithm W.
» Enabling technology of fully flexible types
» Modularity helps.
» The algorithm computes the best analysis for a given fully
flexible type derivation.

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
8 N



The source language

» Simple monomorphic language:
» Producers: lambda-abstractions and boolean literals
» Consumers: applications, fix and conditional
» Variables propagate.

» Each expression is labelled to express its location.

t o= x|p'|c
p == false | true | Ax: 7.4
¢ == ifrithennelsets | 111 | fixe.
5&\\“@ [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
9 NS



pes and type environments

Types, taken from Ty, are given by
T = bool | 71— 1.
Type environments are given by

I' € TyEnv = Var—y, Ty

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA



Control-flow annotations

» Associate with each term ¢ a triple TV & @

> Y is an annotation, a set of labels describing the
production sites of the values of t.

» ¢ is an effect value that describes the flow (¢, y) that may
result from evaluating #: values produced at ¢; € y may
flow to £.

> T is an annotated type that may contain further
annotations:

T u= bool | g1 LB |
» We extend to annotated type environments:
~ — —~
I' € TyEnv = Var—,(Ty x Ann)
5&\\“@ [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
11 NS



Your first fully flexible (annotated) type

(Ax : bool. (if x then false’ else true?))™,

which may result in

(Vﬁ.bool/3 (&)} boo1té /iz}){b;}&{}

v

Produces a result constructed at ¢; or /5.

v

A lambda has no effect, and produces itself.

v

No need to restrict the annotation of the argument x.
» Always annotate with an annotation variable.

v

For every use of the expression we may choose a different
instance for f3.

» Whatever is passed in is consumed by the conditional, /3.

‘S\ ﬁ/) . . . [Facul_ty of S'ciem:e

% &) § Universiteit Utrecht Information and Computing Sciences]

TN
12



» Types in which all argument positions are labelled with a
quantified annotation variable.

> Our algorithm only infers fully flexible types.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA



From fully flexible types to effect operators

(Af : bool — bool. (f true’s ))&

» To be fully flexible f has annotation .

» All functions passed into f are fully flexible: give f type
VB.boolf 2 boo1V.

> In general, the latent effect of f and the flow of the result
of f depend on f.

» Let's make that explicit: Vf.boolP LIRS

» Now, ¢y and y) have become effect operators.

&) [Faculty of Science
% & § Universiteit Utrecht Information and Computing Sciences]

14 K&/



Delivery time for the motivating example

15

(Af : bool — bool.
(if (f false’)" then (f true®)™ else false’s)’)"

has fully flexible annotated type

V. ¥8o. VBo. (VB.boolP BB,y boo1 (B B

{(€2,B7) YU{ (€4, Br) YU { €1 }US0 {43 }U{ (46, Bo {£1})}
boo1Bo {fz}U{fs}),

Instantiating it to prepare it for receiving (Ax : bool.x)’ gives

) {(é2=£8)7(247£8)7(£67[1)}

(VB.boolf s boo1h bool{f:fs}h,

Finally commit to particular choices: B = {/l3},8 =AB.{}
V and ﬁo - Aﬁ ﬁ [Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

g,
%s\

AL



» Analysis of a function is parameterised over the analysis of
its argument.

» The relation between those is captured by the
annotation/effect operators.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA



Further remarks

> Analysis of a function is parameterised over the analysis of
its argument.

» The relation between those is captured by the
annotation /effect operators.
» Changes are not without consequences.

» Unification of types now needs beta-reduction of
expressions over annotations and effects.

» And a notion of well-typedness (sorting) for such
expressions.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
16 N



ubiquitous deduction rules

» See the paper.

> Includes

definitions for sorting the annotations and effects,
definitional equivalence for annotations and effects,
definition of type well-formedness,

and metatheoretic properties.

v vV VvV VY

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA



The algorithm

» Remarkably like Algorithm W.
» Traverse t to perform “unifications”, and generates
constraints that describe the actual flow.
» Solving is a bit more complicated due to beta-reduction for
annotations and effects.
» Compared to Algorithm W:
» Solve occurs for each lambda-abstraction (vs. let-definition)
» Instantiation performed in the application rule (vs.
identifier).
N/ Faculty of Science
ﬁﬂ% Universiteit Utrecht Information and CcEmputitr):g Sciences]
18 NS



Summary

» Full annotated-type inference in the presence of
higher-ranked polymorphism for annotations.

» Allows to parameterise functions over the analysis of their

argu ments,
» which provides context-sensitivity for lambda-bound
identifiers.
;s\\“% [Faculty of Science
; &) % Universiteit Utrecht Information and Computing Sciences]
19 N



Future work, lots of it

» Short term: asymptotic complexity estimate
» Scale to realistic language.
» Apply to other optimising analyses.
» Backwards variant
» For every value, where may it flow to.
» Extend to validating analyses, e.g., dimension analysis.
> Minimal typing derivations.
» Comparison with let-polyvariance:
» How much does additional precision buy us practically?
» Comparison with intersection types.
> Currently available implementations of intersection types?

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
20 NS



Thank you for your attention

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(] [ = =

DEE



» Algorithm W style constraint based algorithm.

R(T,1) returns (7,B,8,C).

» 7 is the annotated type.

» B is an annotation variable representing the top-level
annotation of 7.

0 is an effect variable.

Constraint set ' to constrain these.

v

v

v

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA



Algorithm - the case of lambda

R, (Ax: 71.01)") =
let (%\l’%i B S,‘) = C(Tl,&')
B1, B, 8 be fresh R
(72,B2,8,C1) =R(I[x = (71, B1)],11)
X ={B }U{x U (I
(V/z,(Po) =S(C1,X,B2,6)
=V :: ann. Vg 5. TP D 32

in (?7&57{{5} CB})

Completion function C annotates type 7; freshly.

v

v

Solve to obtain actual flows before generalisation.

Solver S treats active variables as annotation constants.

v

Active = free in I or exposed via 7.

v

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

28



Algorithm - the case of application

R(T, (1 1)) =

let (71,B1,61,C1) = R(i f)
(72,B2,8,,C5) = R(T',12)
B v —i(z)
6 =B, B]oM([], 22, 7))
B, 6 be fresh
={01CoIU{&B CotU{{(L,B1)} Cotu{B g, Co}U
{ey' CBiuciu
n (67,B,6,0)

» | freshes all annotation variables.
» M performs matching (one-sided unification).
» Works because the second argument is the result of I.

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

24



Algorithm - the case of application

R(T, (1 1)) =

let (71,B1,61,C1) = R(itl)
(%\23.327627 ) R(F,lz)
CLRUS e
6 =B, B]loM([], 22, 7))

B, 8 be fresh
— {8 C8YU{& C SYU{{(L,B1)} S 5}U{6 ¢} C 5} U
{ey' Cpruciu
n (67,B,8,C)
6; C 0,0, C &: flow of evaluating application includes the
effects of evaluating the function and argument.

0 @) C &: effect of the body is included too.

v

v

v

(¢,B1)} C &: the application consumes the function.
» 6y C B: body result flows to the application r?sul

Faculty of Science
i Universiteit Utrecht Information and Computing Sciences]

24 %AAL\\’



