
[Faculty of Science
Information and Computing Sciences]

Polyvariant Flow Analysis with
Higher-ranked Polymorphic Types and

Higher-order Effect Operators

Jurriaan Hage
Joint work with Stefan Holdermans (Vector Fabrics)

Dept. of Information and Computing Sciences
Utrecht University
The Netherlands

E-mail: jur@cs.uu.nl

September 27, 2010

[Faculty of Science
Information and Computing Sciences]

2

Type based program analysis

I Compilers for strongly typed functional languages need to
implement the intrinsic type system of the language.

I In TBPA:
I Other analyses take advantage of standardised concepts,

vocabulary, and implementation.
I Moreover, the (underlying) types lend structure to the

analysis.

[Faculty of Science
Information and Computing Sciences]

3

Control-flow analysis

I Control-flow analysis:

Determine for every expression, the locations
where its value may have been produced.

I In type and effect systems: annotate types with analysis
information.

I bool{`1,`2} describes
I a boolean value
I produced at either program location `1 or `2.

I (bool{`1}→ bool{`1,`3}){`2} describes
I a boolean-valued function produced at location `2
I that takes a value produced at `1 and
I returns a value produced at `1 or `3.

[Faculty of Science
Information and Computing Sciences]

4

An imprecise control-flow analysis

h f = if f false`1 then f true`2 else false`3

id x = x
main = h id

I h can have type (bool{`1,`2}→ bool{`1,`2})→ bool{`1,`2,`3}

[Faculty of Science
Information and Computing Sciences]

4

An imprecise control-flow analysis

h f = if f false`1 then f true`2 else false`3

id x = x
main = h id

I h can have type (bool{`1,`2}→ bool{`1,`2})→ bool{`1,`2,`3}

I id can have type bool{`1,`2}→ bool{`1,`2}

I Unacceptable:
I analysis is not modular: all uses of id must be known.
I other uses of id poisoned by effect of passing id to h

[Faculty of Science
Information and Computing Sciences]

5

Let-polyvariance to the rescue

id x = x
h f = if f false`1 then f true`2 else false`3 ,
main = h id

I Let-defined and top-level identifiers identifiers can obtain a
context-sensitive, polyvariant type.

I h can now have type
∀β .(bool{`1,`2}→ boolβ)→ boolβ∪{`3}

I For h id, instantiate β to {`1, `2} to obtain bool{`1,`2,`3}.

I Improvement visible for h ctrue where ctrue z = true`4 :
bool{`3,`4} instead of bool{`1,`2,`3,`4}.

I Moreover, type of h independent of other calls to h.

I But there is still some poisoning left.

[Faculty of Science
Information and Computing Sciences]

5

Let-polyvariance to the rescue

id x = x
h f = if f false`1 then f true`2 else false`3 ,
main = h id

I Let-defined and top-level identifiers identifiers can obtain a
context-sensitive, polyvariant type.

I h can now have type
∀β .(bool{`1,`2}→ boolβ)→ boolβ∪{`3}

I For h id, instantiate β to {`1, `2} to obtain bool{`1,`2,`3}.

I Improvement visible for h ctrue where ctrue z = true`4 :
bool{`3,`4} instead of bool{`1,`2,`3,`4}.

I Moreover, type of h independent of other calls to h.

I But there is still some poisoning left.

[Faculty of Science
Information and Computing Sciences]

6

Higher-ranked polyvariance to finish the job

id x = x
h f = if f false`1 then f true`2 else false`3 ,
main = h id

I Type of main is bool{`1,`2,`3}

I But: the value of `1 never flows to result of h.

I Poisoning still applies to different uses of f in h.

I Why?

[Faculty of Science
Information and Computing Sciences]

6

Higher-ranked polyvariance to finish the job

id x = x
h f = if f false`1 then f true`2 else false`3 ,
main = h id

I Type of main is bool{`1,`2,`3}

I But: the value of `1 never flows to result of h.

I Poisoning still applies to different uses of f in h.

I Because f has to be assigned a monovariant type.

I If f could have type ∀β .boolβ → boolβ , then
I β = {`1} for condition: does not propagate to result h id
I β = {`2} for then-part: propagates to result h id

[Faculty of Science
Information and Computing Sciences]

7

Central question

But can such types, annotated with flow-sets, be inferred?

I Unassisted inference for higher-ranked polymorphism is
undecidable.

I For control-flow analysis we much prefer not to assist.

I But note that our types are not higher-ranked, only the
annotations are.

[Faculty of Science
Information and Computing Sciences]

7

Central question

But can such types, annotated with flow-sets, be inferred?

I Unassisted inference for higher-ranked polymorphism is
undecidable.

I For control-flow analysis we much prefer not to assist.

I But note that our types are not higher-ranked, only the
annotations are.

[Faculty of Science
Information and Computing Sciences]

7

Central question

But can such types, annotated with flow-sets, be inferred?

I Unassisted inference for higher-ranked polymorphism is
undecidable.

I For control-flow analysis we much prefer not to assist.

I But note that our types are not higher-ranked, only the
annotations are.

[Faculty of Science
Information and Computing Sciences]

7

Central question

But can such types, annotated with flow-sets, be inferred?

I Unassisted inference for higher-ranked polymorphism is
undecidable.

I For control-flow analysis we much prefer not to assist.

I But note that our types are not higher-ranked, only the
annotations are.

[Faculty of Science
Information and Computing Sciences]

8

Our contributions

I Undecidability of inference for higher-order polymorphism
on types does not imply undecidability of inference for
higher-ranked annotations on (ordinary) types.

I Inspired by Dussart, Henglein and Mossin

I Type inference algorithm is remarkably like Damas and
Milner’s algorithm W.

I Enabling technology of fully flexible types
I Modularity helps.

I The algorithm computes the best analysis for a given fully
flexible type derivation.

[Faculty of Science
Information and Computing Sciences]

9

The source language

I Simple monomorphic language:
I Producers: lambda-abstractions and boolean literals
I Consumers: applications, fix and conditional
I Variables propagate.

I Each expression is labelled to express its location.

t ::= x | p` | c`

p ::= false | true | λx : τ. t1
c ::= if t1 then t2 else t3 | t1 t2 | fix t1.

[Faculty of Science
Information and Computing Sciences]

10

Types and type environments

Types, taken from Ty, are given by

τ ::= bool | τ1→ τ2.

Type environments are given by

Γ ∈ TyEnv = Var→fin Ty .

[Faculty of Science
Information and Computing Sciences]

11

Control-flow annotations

I Associate with each term t a triple τ̂ψ & ϕ

I ψ is an annotation, a set of labels describing the
production sites of the values of t.

I ϕ is an effect value that describes the flow (`,ψ) that may
result from evaluating t: values produced at `1 ∈ ψ may
flow to `.

I τ̂ is an annotated type that may contain further
annotations:

τ̂ ::= bool | τ̂1
ψ1

ϕ−→ τ̂2
ψ2 | ...

I We extend to annotated type environments:

Γ̂ ∈ T̂yEnv = Var→fin (T̂y×Ann) .

[Faculty of Science
Information and Computing Sciences]

12

Your first fully flexible (annotated) type

(λx : bool.(if x then false`1 else true`2)`3)`4 .

which may result in

(∀β .boolβ
{(`3,β)}−−−−−→bool{`1,`2}){`4}&{ },

I Produces a result constructed at `1 or `2.

I A lambda has no effect, and produces itself.
I No need to restrict the annotation of the argument x.

I Always annotate with an annotation variable.

I For every use of the expression we may choose a different
instance for β .

I Whatever is passed in is consumed by the conditional, `3.

[Faculty of Science
Information and Computing Sciences]

13

Fully flexible types

I Types in which all argument positions are labelled with a
quantified annotation variable.

I Our algorithm only infers fully flexible types.

[Faculty of Science
Information and Computing Sciences]

14

From fully flexible types to effect operators

(λf : bool→ bool.(f true`5)`6)`7 ,

I To be fully flexible f has annotation βf .

I All functions passed into f are fully flexible: give f type

∀β .boolβ
ϕ−→boolψ .

I In general, the latent effect of f and the flow of the result
of f depend on β .

I Let’s make that explicit: ∀β .boolβ
ϕ0 β−−→boolψ0 β

I Now, ϕ0 and ψ0 have become effect operators.

[Faculty of Science
Information and Computing Sciences]

15

Delivery time for the motivating example

(λf : bool→ bool.
(if (f false`1)`2 then (f true`3)`4 else false`5)`6)`7

has fully flexible annotated type

∀βf .∀δ0.∀β0.(∀β .boolβ
δ0 β−−→bool(β0 β))βf

{(`2,βf)}∪{(`4,βf)}∪δ0 {`1}∪δ0 {`3}∪{(`6,β0 {`1})}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
bool(β0 {`3}∪{`5}),

Instantiating it to prepare it for receiving (λx : bool.x)`8 gives

(∀β .boolβ
{ }−→boolβ)

{(`2,`8),(`4,`8),(`6,`1)}−−−−−−−−−−−−−→bool{`3,`5}.

Finally commit to particular choices: βf = {`8},δ0 = λβ .{ }
and β0 = λβ .β .

[Faculty of Science
Information and Computing Sciences]

16

Further remarks

I Analysis of a function is parameterised over the analysis of
its argument.

I The relation between those is captured by the
annotation/effect operators.

I Changes are not without consequences.
I Unification of types now needs beta-reduction of

expressions over annotations and effects.
I And a notion of well-typedness (sorting) for such

expressions.

[Faculty of Science
Information and Computing Sciences]

16

Further remarks

I Analysis of a function is parameterised over the analysis of
its argument.

I The relation between those is captured by the
annotation/effect operators.

I Changes are not without consequences.
I Unification of types now needs beta-reduction of

expressions over annotations and effects.
I And a notion of well-typedness (sorting) for such

expressions.

[Faculty of Science
Information and Computing Sciences]

17

The ubiquitous deduction rules

I See the paper.
I Includes

I definitions for sorting the annotations and effects,
I definitional equivalence for annotations and effects,
I definition of type well-formedness,
I and metatheoretic properties.

[Faculty of Science
Information and Computing Sciences]

18

The algorithm

I Remarkably like Algorithm W.

I Traverse t to perform “unifications”, and generates
constraints that describe the actual flow.

I Solving is a bit more complicated due to beta-reduction for
annotations and effects.

I Compared to Algorithm W:
I Solve occurs for each lambda-abstraction (vs. let-definition)
I Instantiation performed in the application rule (vs.

identifier).

[Faculty of Science
Information and Computing Sciences]

19

Summary

I Full annotated-type inference in the presence of
higher-ranked polymorphism for annotations.

I Allows to parameterise functions over the analysis of their
arguments,

I which provides context-sensitivity for lambda-bound
identifiers.

[Faculty of Science
Information and Computing Sciences]

20

Future work, lots of it

I Short term: asymptotic complexity estimate

I Scale to realistic language.

I Apply to other optimising analyses.
I Backwards variant

I For every value, where may it flow to.

I Extend to validating analyses, e.g., dimension analysis.

I Minimal typing derivations.
I Comparison with let-polyvariance:

I How much does additional precision buy us practically?

I Comparison with intersection types.
I Currently available implementations of intersection types?

[Faculty of Science
Information and Computing Sciences]

21

Thank you for your attention

[Faculty of Science
Information and Computing Sciences]

22

Algorithm

I Algorithm W style constraint based algorithm.
I R(Γ̂, t) returns (τ̂,β ,δ ,C).
I τ̂ is the annotated type.
I β is an annotation variable representing the top-level

annotation of τ̂.
I δ is an effect variable.
I Constraint set C to constrain these.

[Faculty of Science
Information and Computing Sciences]

23

Algorithm - the case of lambda

R(Γ̂,(λx : τ1. t1)`) =
let (τ̂1,χi :: si) = C(τ1,ε)

β1,β ,δ be fresh

(τ̂2,β2,δ0,C1) = R(Γ̂[x 7→ (τ̂1,β1)], t1)

X = {β1}∪{χi}∪ffv(Γ̂)
(ψ2,ϕ0) = S(C1,X,β2,δ0)

τ̂ = ∀β1 :: ann.∀χi :: si. τ̂1
β1

ϕ0−→ τ̂2
ψ2

in (τ̂,β ,δ ,{{`} ⊆ β })

I Completion function C annotates type τ1 freshly.

I Solve to obtain actual flows before generalisation.

I Solver S treats active variables as annotation constants.

I Active = free in Γ̂ or exposed via τ̂.

[Faculty of Science
Information and Computing Sciences]

24

Algorithm - the case of application

R(Γ̂,(t1 t2)`) =
let (τ̂1,β1,δ1,C1) = R(Γ̂, t1)

(τ̂2,β2,δ2,C2) = R(Γ̂, t2)

τ̂ ′2
β ′2

ϕ ′0−→ τ̂ ′ψ
′
= I(τ̂1)

θ = [β ′2 7→ β2]◦M([], τ̂2, τ̂
′
2)

β ,δ be fresh
C = {δ1 ⊆ δ }∪{δ2 ⊆ δ }∪{{(`,β1)} ⊆ δ }∪{θ ϕ ′0 ⊆ δ }∪
{θ ψ ′ ⊆ β }∪C1∪C2

in (θ τ̂ ′,β ,δ ,C)

I I freshes all annotation variables.
I M performs matching (one-sided unification).

I Works because the second argument is the result of I.

[Faculty of Science
Information and Computing Sciences]

24

Algorithm - the case of application

R(Γ̂,(t1 t2)`) =
let (τ̂1,β1,δ1,C1) = R(Γ̂, t1)

(τ̂2,β2,δ2,C2) = R(Γ̂, t2)

τ̂ ′2
β ′2

ϕ ′0−→ τ̂ ′ψ
′
= I(τ̂1)

θ = [β ′2 7→ β2]◦M([], τ̂2, τ̂
′
2)

β ,δ be fresh
C = {δ1 ⊆ δ }∪{δ2 ⊆ δ }∪{{(`,β1)} ⊆ δ }∪{θ ϕ ′0 ⊆ δ }∪
{θ ψ ′ ⊆ β }∪C1∪C2

in (θ τ̂ ′,β ,δ ,C)

I δ1 ⊆ δ ,δ2 ⊆ δ : flow of evaluating application includes the
effects of evaluating the function and argument.

I θ ϕ ′0 ⊆ δ : effect of the body is included too.

I (`,β1)} ⊆ δ : the application consumes the function.

I θ ψ ′ ⊆ β : body result flows to the application result.

