
Generic programming with fixed points for
mutually recursive datatypes

Alexey Rodriguez

Stefan Holdermans

Andres Löh

Johan Jeuring

Technical Report UU-CS-2008-019

July 2008

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Generic programming with fixed points for
mutually recursive datatypes

Alexey Rodriguez1 Stefan Holdermans1 Andres Löh1 Johan Jeuring1,2

1Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
2School of Computer Science, Open University of the Netherlands, P.O. Box 2960, 6401 DL Heerlen, The Netherlands

{alexey,stefan,andres,johanj}@cs.uu.nl

Abstract
Many datatype-generic functions need access to the recursive posi-
tions in the structure of the datatype, and therefore adopt a fixed
point view on datatypes. Examples include variants of fold that
traverse the data following the recursive structure, or the zipper
data structure that enables navigation along the recursive posi-
tions. However, Hindley-Milner-inspired type systems with alge-
braic datatypes make it difficult to express fixed points for anything
but regular datatypes. Many real-life examples such as abstract syn-
tax trees are in fact systems of mutually recursive datatypes and
therefore excluded. Using Haskell’s GADTs and type families, we
describe a technique that allows a fixed-point view for systems of
mutually recursive datatypes. We demonstrate that our approach is
widely applicable by giving several examples of generic functions
for this view, most prominently the Zipper.

1. Introduction
One of the most important activities in software development is
structuring data. Many programming methods and software devel-
opment tools center around creating a datatype (or XML schema,
UML model, class, grammar, etc.). Once the structure of the data
has been designed, a software developer adds functionality to the
datatypes. There is always some functionality that is specific for a
datatype, and part of the reason why the datatype has been designed
in the first place. Other functionality is similar or even the same on
many datatypes. Examples of such functionality are:

• in a large datatype, looking for occurrences of a particular
constructor (e.g., for representing variables) for which we want
to do something, ignoring the rest of the value;

• functions that depend only on the structure of the datatype, such
as the equality function;

• adapting the code after datatypes have changed or evolved.

Generic programming addresses these high-level programming
patterns. We also use the term datatype-generic programming to
distinguish the field from Java generics, Ada generic packages,
generic programming in C++ STL, etc. Using generic program-
ming, we can easily implement traversals in which a user is only
interested in a small part of a possibly large value, functions which
are naturally defined by induction on the structure of datatypes, and
functions that automatically adapt to a changing datatype.

Generic programming grew out of category theory, in which
datatypes are represented as initial algebras or fixed points of func-
tors (Hagino 1987; Malcolm 1990; Meijer et al. 1991). A functor is
a datatype of kind ∗→∗ together with a map function. Fixed points
are represented by an instance of the Fix datatype:

data Fix f = In (f (Fix f))

and functors can be constructed using a limited set of datatypes for
sums and products.

The set of datatypes that can be represented by means of Fix
is limited, and does not include mutually recursive datatypes and
nested datatypes (Bird and Meertens 1998). Early generic program-
ming systems based on a fixed-point view, such as PolyP (Jansson
and Jeuring 1997), inherit these restrictions. The lack of support for
mutually recursive datatypes is particularly limiting, because most
larger systems are described by several datatypes with complex de-
pendencies.

Partially to overcome such limitations, several other approaches
to generic programming have been developed, among them Generic
Haskell (Hinze 2000; Löh 2004; Löh et al. 2008) and Scrap Your
Boilerplate (Lämmel and Peyton Jones 2003). These approaches do
not use fixed points to represent datatypes, and can handle mutually
recursive types, and many or all nested types. However, they have
no knowledge about the recursive structure of datatypes.

Quite a number of generic functions need information about the
recursive structure of datatypes. Examples of such functions are the
recursion schemes such as fold and its variants (Meijer et al. 1991),
upwards and downwards accumulations (Bird et al. 1996; Gibbons
1998), unification (Jansson and Jeuring 1998), rewriting and match-
ing functions (Jansson and Jeuring 2000), functions for selecting
subexpressions (Steenbergen et al. 2008), pattern matching (Jeur-
ing 1995), design patterns (Gibbons 2006), the Zipper and its vari-
ants (Huet 1997; McBride 2001; Hinze et al. 2004; Morris et al.
2006; McBride 2008), etc. The recursive structure of datatypes also
plays an important role when transforming programs or proving
properties about programs, such as the fold fusion theorem (Mal-
colm 1990), the generic approximation lemma (Hutton and Gib-
bons 2001), and the acid-rain theorem (Takano and Meijer 1995).

In a generic programming system that does not use fixed points,
such functions cannot be defined properly. In Generic Haskell,
views on datatypes have been added, including a fixed-point view
on datatypes (Holdermans et al. 2006): a programmer can choose to
write a function that does not need access to the recursive positions
and works on many datatypes, or to write a function that requires
the fixed-point view, but that function is again restricted to a rather
small set of datatypes.

The problem of representing a system of mutually recursive
datatypes by means of an initial algebra or a fixed point has been
studied before (Malcolm 1990). However, such solutions cannot
be used as a base for generic programming on current Hindley-
Milner-inspired type systems. The number of functors in the fixed
point and their arity is the same as the number of mutually recursive
datatypes represented. In a language like Haskell, this pattern can
only be captured by introducing new datatypes for every arity. As a

consequence, we would have to duplicate the machinery over and
over again, defeating the very purpose of generic programming.

This paper makes the following contributions:

• We show how to represent a system of (arbitrarily many) mu-
tually recursive datatypes using a fixed-point view in Haskell,
using extensions to the Haskell language, most prominently
GADTs (Peyton Jones et al. 2006), type families (Chakravarty
et al. 2005) and rank-2 types. Despite these extensions, the
technique is easy to use for the programmer, and does not re-
quire more effort than other approaches to generic program-
ming (Section 3).

• We show that our technique is widely applicable by present-
ing several generic algorithms that work on systems of mutu-
ally recursive datatypes. In Section 4, we demonstrate how to
define recursion schemes such as compos (Bringert and Ranta
2006) and fold. In Section 5, we define a generic Zipper data
structure (Huet 1997). In Section 6, we explain how to perform
generic matching, which constitutes an important prerequisite
for generic rewriting (Noort et al. 2008).

Our contributions are not necessarily limited to programming lan-
guages such as Haskell. We think that, in some applications, our
technique may be simpler to use than those already solving the
same problem in more expressive programming languages. To our
knowledge, we are the first to show how to conveniently imple-
ment generic functions that need access to the recursive structure
of datatypes on mutually recursive datatypes. For example, com-
piler writers get immediate access to generic matching, rewriting,
and folding functions for their abstract syntax. The convenience
is due to the lightweight nature of our approach: no generators or
full dependent types are needed. Furthermore, our approach is non-
invasive: the definitions of large systems of datatypes need not be
modified in order to use generic programming.

In Section 7, we discuss related work, and in Section 8, we
conclude. The code in this paper is executable: a Haskell module
that compiles using GHC version 6.8.3 and the LATEX file are
generated from common sources.1

2. Fixed points for representing regular datatypes
Before we present fixed points for systems of mutually recursive
datatypes, we review fixed points for regular datatypes. A functor
is a datatype of kind ∗→ ∗ for which we can define a map function.
Fixed points are represented by an instance of the Fix datatype:

data Fix f = In {out :: (f (Fix f))}
Haskell’s record notation is used to introduce the selector function
out :: Fix f → f (Fix f). Using Fix, we can represent the following
datatype for simple arithmetic expressions

data Expr = Const Int | Add Expr Expr |Mul Expr Expr

by its pattern functor:

data PFExpr r = ConstF Int | AddF r r |MulF r r

type Expr′ = Fix PFExpr

Given a map function for PFExpr, many recursion schemes (for
example, fold and unfold) can be easily defined on Expr′.

2.1 Building functors systematically
It is not necessary to define a specific map function for each and
every pattern functor, though – as long as we build functors using a
fixed set of datatypes:

1 Note to reviewers: until its release as a library, the code is available for
download from http://people.cs.uu.nl/andres/Rec/

data K a r = K a
data I r = I r
data (f :×: g) r = f r :×: g r
data (f :+: g) r = L (f r) | R (g r)
infixr 7 :×:
infixr 6 :+:

We define a generic map function by declaring the following in-
stances of the class Functor:

class Functor f where
fmap :: (a→ b)→ f a→ f b

instance Functor I where
fmap f (I r) = I (f r)

instance Functor (K a) where
fmap (K x) = K x

instance (Functor f,Functor g)⇒ Functor (f :+: g) where
fmap f (L x) = L (fmap f x)
fmap f (R y) = R (fmap f y)

instance (Functor f,Functor g)⇒ Functor (f :×: g) where
fmap f (x :×: y) = fmap f x :×: fmap f y

Now, if expressions are represented by the functor PFExpr

type PFExpr = K Int :+: (I :×: I) :+: (I :×: I)
type Expr′ = Fix PFExpr

we get fmap for expressions for free.
Datatypes, such as Expr, whose recursive structure can be rep-

resented by a polynomial functor (consisting of sums, products and
constants) are often called regular datatypes. This uniform encod-
ing allows us to define functions that work on all regular datatypes:

fold ::Functor f⇒ (f a→ a)→ Fix f→ a
fold f = f◦ fmap (fold f)◦out
unfold ::Functor f⇒ (a→ f a)→ a→ Fix f
unfold f = In◦ fmap (unfold f)◦ f

2.2 Representations of regular datatypes
Unfortunately, functions fold and unfold can only be used on reg-
ular datatypes that are already encoded as fixed points of func-
tors. In other words, they work on values of type Expr′, but not on
values of type Expr. In practice, being forced to work with Expr′

rather than Expr is inconvenient: it is much easier to work with the
user-defined, appropriately named constructors of Expr than with
the structural constructors of Expr′. Therefore, some generic pro-
gramming languages automatically generate mappings that relate
datatypes such as Expr with their structure representation counter-
parts (Expr′) (Jansson and Jeuring 1997; Löh 2004; Holdermans
et al. 2006).

In Haskell we can express such mappings by means of a type
class. We define the type class Regular to encode the recursive
structure of regular datatypes:

type family PF a ::∗→ ∗
class Functor (PF a)⇒ Regular a where

from ::a→ (PF a) a
to :: (PF a) a→ a

The functor type of a regular datatype is given by the pattern func-
tor PF, a type family: for different instantiations of the type index a,
we can provide different definitions of PF a. The pattern functor PF
corresponds to PolyP’s type constructor FunctorOf (Jansson and
Jeuring 1997; Norell and Jansson 2004). The two methods from and
to embed regular datatypes into their pattern functor-based repre-
sentation.

Here is the Regular instance for expressions:

type instance PF Expr = PFExpr

instance Regular Expr where
from (Const i) = L (K i)
from (Add e e’) = R (L (I e :×: I e’))
from (Mul e e’) = R (R (I e :×: I e’))
to (L (K i)) = Const i
to (R (L (I e :×: I e’))) = Add e e’
to (R (R (I e :×: I e’))) = Mul e e’

Note that from and to transform only the top layer of a value. If
desired, we can convert between Expr and Expr′ by recursively
applying from and to.

We can now rewrite fold and unfold such that they work on
instances of Regular (thus in particular, on Expr rather than Expr′):

fold ::Regular a⇒ (PF a b→ b)→ a→ b
fold f = f◦ fmap (fold f)◦ from
unfold ::Regular a⇒ (b→ PF a b)→ b→ a
unfold f = to◦ fmap (unfold f)◦ f

Another recursion scheme we can define is compos (Bringert and
Ranta 2006). Much like fold, it traverses a datastructure and per-
forms operations on the children. There are different variants of
compos, the simplest is equivalent to PolyP’s mapChildren (Jans-
son and Jeuring 1998): it applies a function of type a→ a to all
children. This parameter is also responsible for performing the re-
cursive call, because compos itself is not recursive:

compos ::Regular a⇒ (a→ a)→ a→ a
compos f = to◦ fmap f◦ from

3. Fixed points for mutually recursive datatypes
This section investigates representing systems of mutually recur-
sive datatypes as fixed points. We first show why fixed points for
single datatypes do not easily generalize to the situation of multi-
ple datatypes. Subsequently, we present a solution to that problem,
culminating in a library for representing systems of datatypes.

3.1 The problem
Consider the following extended version of our Expr datatype:

data Expr = Const Int
| Add Expr Expr
| Mul Expr Expr
| EVar Var
| Let Decl Expr

data Decl = Var := Expr
| Seq Decl Decl

type Var = String

We cannot represent Expr as before: the pattern functor of Expr
exposes the direct recursive occurrences of Expr, but every occur-
rence of Decl is treated as a constant, even though declarations can
contain expressions again.

One possibility, presented by Swierstra et al. (1999), is to use
a different fixed point datatype, which abstracts over bifunctors of
kind ∗→ ∗→ ∗ rather than functors of kind ∗→ ∗:

data Fix2 f g = In2 (f (Fix2 f g) (Fix2 g f))

Representing a set of three mutually recursive datatypes in this style
requires a fixed point that takes three arguments, and so on. As a
result, we cannot use one set of datatypes to build functors and de-
fine generic functions just for that one set. Instead, we basically
have to duplicate the same machinery over and over again, defeat-
ing the very purpose of generic programming. Furthermore, sys-

tems of datatypes can be very large, so we cannot hope that using a
limited amount of Fix-variants will suffice in practice.

3.2 Intermediate step: using a GADT
We can encode a system of (arbitrarily many) mutually recursive
datatypes using a GADT (Bringert and Ranta 2006). For instance,
we can replace the definitions in Section 3.1 by the GADT defined
as the union of the previously separate datatypes:

data AST ::∗→ ∗ where
Const :: Int→ AST Expr
Add ::AST Expr→ AST Expr→ AST Expr
Mul ::AST Expr→ AST Expr→ AST Expr
EVar ::AST Var→ AST Expr
Let ::AST Decl→ AST Expr→ AST Expr

(:=) ::AST Var→ AST Expr→ AST Decl
Seq ::AST Decl→ AST Decl→ AST Decl

V ::String→ AST Var

where Expr, Decl and Var are dummy types used to distinguish the
categories, and, in the following, these do no longer refer to the
original definitions:

data Expr
data Decl
data Var

There is a choice in the definition of AST. We can include Var
in our set of mutually recursive datatypes, as we do here. Alterna-
tively, we can just replace all occurrences of AST Var above with
String, save the definition of the Var dummy type and the V con-
structor. However, we then cannot operate on variables directly in
our generic functions.

It turns out that it is easier to think about the fixed point view
in terms of the above GADT. In other words, we have reduced the
problem of finding a fixed point for mutually recursive datatypes
to that of finding a fixed point for a GADT. In the following, we
“manually” define a pattern functor for the GADT, and we next
show how to represent the structure of this pattern functor. Finally
(in Section 3.5), we show how to use the same idea with the original
system of datatypes.

3.3 Manually derived GADT pattern functor
We can define the pattern functor of our GADT directly, without
using sums and products. The idea is to repeat the definition of
AST given above, but now abstracting over the recursive positions.

data PFAST (r ::∗→ ∗) ::∗→ ∗ where
ConstF :: Int→ PFAST r Expr
AddF :: r Expr→ r Expr→ PFAST r Expr
MulF :: r Expr→ r Expr→ PFAST r Expr
EVarF :: r Var→ PFAST r Expr
LetF :: r Decl→ r Expr→ PFAST r Expr

BindF :: r Var→ r Expr→ PFAST r Decl
SeqF :: r Decl→ r Decl→ PFAST r Decl

VF ::String→ PFAST r Var

A recursive occurrence is referred to by the variable r, which is
indexed by the type of the subtree, and hence has kind ∗ → ∗.
The fixed point datatype is changed to account for the addition of
the type index in the functor – but note that the kind of HFix is
independent of the number of mutually recursive datatypes:

data HFix (f :: (∗→ ∗)→∗→ ∗) a = HIn (f (HFix f) a)
type AST′ = HFix PFAST

At the top level, the index argument a of HFix is passed to the
functor f. At each recursive point, the index can be changed as de-

sired: for example, LetF dictates that the index of the first recursive
call is Decl, and the index of the second recursive call is Expr.
Using the HFix-based encoding, the expression Let (V "x" :=
Const 2) (EVar (V "x")) can be represented by

HIn (LetF (HIn (BindF (HIn (VF "x")) (HIn (ConstF 2))))
(HIn (EVarF (HIn (VF "x")))))

3.4 Representing the pattern functor
To support generic programming on mutually recursive datatypes
in a way similar to that shown for regular ones in Section 2, we want
to describe our datatypes by means of a pattern functor expressed
in terms of a small number of building blocks, such as binary sums
and products.

3.4.1 A failed attempt
It is not enough to just encode AST by ignoring the type index (and
thus changing the kind of PFAST):

type PFAST = K Int :+: -- Const
(I :×: I) :+: -- Add
(I :×: I) :+: -- Mul
I :+: -- EVar
(I :×: I) :+: -- Let
(I :×: I) :+: -- :=
(I :×: I) :+: -- Seq
K String -- V

type AST′ = Fix PFAST

This way, we have a problem with the conversion between the
original datatype and the pattern functor: we can write from (it just
forgets the index), but to is not typeable (it has to recover the index)
– consider the case for Const:

to ::AST′→ AST a
to (L (K i)) = Const i

The application of Const produces an AST Expr, but the type of
to requires the result to be polymorphic in the index. The pattern
match does not refine the type of the case, as no GADTs are
involved in the match. And hence this function is not typeable. The
(unsatisfactory) solution would be to make the to function specific
to each AST category:

toExpr ::AST′→ AST Expr
toExpr (In (L (K i))) = Const i

But this would make toExpr partial since it cannot handle repre-
sentations of AST Decl. Worse, many static guarantees, such as
performing fmap over an expression should return an expression,
would no longer be enforced by the type system.

3.4.2 A faithful representation
In order to represent the GADT AST faithfully, we have to keep
track of the index, as we did in Section 3.3. We therefore perform
two generalizations.

First, every type constructor gets an additional argument ix,
namely, the index type of the tree being represented. Second, we
add an argument xi to I to indicate the index type on which we
recurse. Since the recursion may be on a different index, xi need
not be the same as ix.

data I xi r ix = I (r xi)
data K a r ix = K a
data (f :+: g) r ix = L (f r ix) | R (g r ix)
data (f :×: g) r ix = f r ix :×: g r ix

There is one missing piece in the representation. How is the choice
between an Expr constructor and a Decl constructor represented?

A sum can be used for the choice, but it cannot constrain ix to either
type. For this purpose, we define the following GADT (:.:). For a
type expression f :.: xi, we say that the structure representation f is
tagged with the tag xi.

infix 6 :.:
data (f :.: xi) r ix where

Tag :: f r ix→ (f :.: ix) r ix

Tagging a structure representation constrains the index ix to be the
same as the tag argument xi. We are now ready to give a structure
representation for AST:

type PFAST = K Int :.: Expr :+: -- Const
(I Expr :×: I Expr) :.: Expr :+: -- Add
(I Expr :×: I Expr) :.: Expr :+: -- Mul
I Var :.: Expr :+: -- EVar
(I Decl :×: I Expr) :.: Expr :+: -- Let
(I Var :×: I Expr) :.: Decl :+: -- :=
(I Decl :×: I Decl) :.: Decl :+: -- Seq
K String :.: Var -- V

The differences with the representation of Expr in Section 2 are that
I takes the index type of the recursive position, and each constructor
representation is tagged with the AST category that it represents.
The conversion functions hardly differ, except for dealing with tags:

from ::AST a→ PFAST AST a
from (Const i) = L (Tag (K i))
from (Add e e’) = R (L (Tag (I e :×: I e’)))
from (Mul e e’) = R (R (L (Tag (I e :×: I e’))))
from (EVar x) = R (R (R (L (Tag (I x)))))
from (Let d e) = R (R (R (R (L (Tag (I d :×: I e))))))
from (x := e) = R (R (R (R (R (L (Tag (I x :×: I e)))))))
from (Seq d d’) = R (R (R (R (R (R (L (Tag (I d :×: I d’))))))))
from (V x) = R (R (R (R (R (R (R (Tag (K x))))))))

to ::PFAST AST a→ AST a
to (L (Tag (K i))) = Const i
to (R (L (Tag (I e :×: I e’)))) = Add e e’
to (R (R (L (Tag (I e :×: I e’))))) = Mul e e’
to (R (R (R (L (Tag (I x)))))) = EVar x
to (R (R (R (R (L (Tag (I d :×: I e))))))) = Let d e
to (R (R (R (R (R (L (Tag (I x :×: I e)))))))) = x := e
to (R (R (R (R (R (R (L (Tag (I d :×: I d’))))))))) = Seq d d’
to (R (R (R (R (R (R (R (Tag (K x))))))))) = V x

The first argument of PFAST specifies that the recursive occur-
rences are AST-values. Both from and to are now typeable. The
pattern matches on Tag refine the type of the equations. For in-
stance, in the case for Const the pattern match on Tag indicates
that a must be equal to Expr on the right hand side. It follows that
Const i is of type AST Expr.

3.5 Eliminating the GADT
Now, we turn our attention back to the AST definitions given in
Section 3.1. Interestingly, we do not need the GADT AST. We use
it as an inspiration to define PFAST, but then map directly between
PFAST and the original datatypes.

3.5.1 The library for representing systems
We can make a type class specific to our AST type to perform this
mapping, but ultimately, we want a library that works with many
systems of datatypes, therefore we declare:

class Ix s ix where
from :: ix→ Str s ix
to ::Str s ix→ ix
index :: s ix

The parameter s indicates the system of datatypes we are working
with, and the predicate Ix s ix expresses that ix is an index of
system s. The structural representation of a type Str s ix is expressed
in terms of a generalized pattern functor type family:

type family PF s :: (∗→ ∗) -- datatype system s
→ (∗→ ∗) -- recursive occurrences r
→∗ -- index type ix
→∗

type Str s ix = (PF s) s I∗ ix

A datatype is represented by the pattern functor of system s con-
strained to represent values of type ix. Note that the r argument
in Str is instantiated to the type I∗:

data I∗ a = I∗{unI∗ ::a}

The type I∗ behaves as the identity on types so that recursive
occurrences inside the functor are stored “as is”. Although the
definition of I∗ is essentially the same as that of I in Section 2, we
give it a different name to highlight the different role that it plays
in this representation.

The structure type constructors are extended once more, passing
around the information about the system s being represented:

data I xi (s ::∗→ ∗) (r ::∗→ ∗) ix where
I :: Ix s xi⇒ r xi→ I xi s r ix

data K a (s ::∗→ ∗) (r ::∗→ ∗) ix = K a
data (f :+: g) (s ::∗→ ∗) (r ::∗→ ∗) ix = L (f s r ix)

| R (g s r ix)
data (f :×: g) (s ::∗→ ∗) (r ::∗→ ∗) ix = f s r ix :×: g s r ix

data (f :.: ix) (s ::∗→ ∗) (r ::∗→ ∗) ix′ where
Tag :: f s r ix→ (f :.: ix) s r ix

Apart from the lifting, the only change in the type constructors is in
the definition of I, where we require the type used in the recursion
to be part of the datatype system, introducing the constraint Ix s xi.

It is possible to simplify this new representation by always
assuming that r is I∗. As a result, we would not need the argument r
and type I∗ anymore, and the argument of I could just have type xi
rather than the current r xi. The resulting representation would be
simpler to use but also more limited. While it could be used for
applications such as compos and the Zipper, it would be useless for
applications that change the type of recursive occurrences such as
fold, unfold, and generic rewriting. Therefore, we prefer to use the
more general representation throughout this paper.

3.5.2 Instantiating the library to a system
We now illustrate our approach by giving a representation for our
datatype system and defining the conversion functions. First, we
define the datatype that represents the datatypes in our system:

data AST ::∗→ ∗ where
Expr ::AST Expr
Decl ::AST Decl
Var ::AST Var

The datatype AST fulfills two roles. First, it labels the system
when used as the argument of PF. Second, the constructors of AST
provide type representations on the value level, which can be used
in generic functions to provide type-specific behaviour.

The pattern functor of AST is defined as follows:

type instance PF AST =
K Int :.: Expr :+: -- Const
(I Expr :×: I Expr) :.: Expr :+: -- Add
(I Expr :×: I Expr) :.: Expr :+: -- Mul
I Var :.: Expr :+: -- EVar
(I Decl :×: I Expr) :.: Expr :+: -- Let
(I Var :×: I Expr) :.: Decl :+: -- :=
(I Decl :×: I Decl) :.: Decl :+: -- Seq
K String :.: Var -- V

Note that the definition of PF AST is nearly the same as the
definition of PFAST before. One difference is that the kinds of the
components are now different.

We can now define the conversion functions per datatype. Since
the actual implementations are as before, we only show the instance
for Expr as an example:

instance Ix AST Expr where
from (Const i) = L (Tag (K i))
from (Add e e’) = R (L (Tag (ci e :×: ci e’)))
from (Mul e e’) = R (R (L (Tag (ci e :×: ci e’))))
from (EVar x) = R (R (R (L (Tag (ci x)))))
from (Let d e) = R (R (R (R (L (Tag (ci d :×: ci e))))))
to (L (Tag (K i))) = Const i
to (R (L (Tag (e :×: e’)))) = Add (di e) (di e’)
to (R (R (L (Tag (e :×: e’))))) = Mul (di e) (di e’)
to (R (R (R (L (Tag x))))) = EVar (di x)
to (R (R (R (R (L (Tag (d :×: e))))))) = Let (di d) (di e)
index = Expr

ci x = I (I∗ x)
di (I (I∗ x)) = x

The method index of class Ix provides access to the type repre-
sentation of Expr on the value level. Such type representations will
be useful later, when we define type-indexed functions.

The small GADT AST, the type family instance for PF and
the instance definitions of Ix are the boilerplate code associated
with our approach: the programmer has to provide this code for
every system of datatypes. The boilerplate is regular enough so
that it could be generated automatically, by building it into the
compiler, using Template Haskell or a preprocessor, but it cannot
be expressed directly within Haskell.

All the other code that we will cover now is generic for such
systems of datatypes, so no further work is required in order to
reap the fruits of our approach.

4. Recursion schemes
With the machinery introduced in Section 3, we can now define the
recursion schemes from Section 2 for systems of mutually recursive
types. Both fold and compos are based on map. Therefore, the key
to defining generic recursion schemes is a generalization of fmap
that we call hmap:

class HFunctor f where
hmap :: (∀ix.Ix s ix⇒ s ix→ r ix→ r′ ix)→

f s r ix→ f s r′ ix

This function is more general than fmap in two ways. First, the
recursive structures being transformed (r and r′) are parametrized
by an index. Second, the transforming function is polymorphic in
the index type, and therefore hmap has a rank-2 type.

We define hmap by induction on the structure of the pattern
functor. The only interesting instance is for I, where we apply the
function parameter. In all the other instances, we just traverse the
structure:

instance HFunctor (I xi) where
hmap f (I x) = I (f index x)

instance HFunctor (K a) where
hmap (K x) = K x

instance (HFunctor f,HFunctor g)⇒
HFunctor (f :+: g) where

hmap f (L x) = L (hmap f x)
hmap f (R y) = R (hmap f y)

instance (HFunctor f,HFunctor g)⇒
HFunctor (f :×: g) where

hmap f (x :×: y) = hmap f x :×: hmap f y
instance HFunctor f⇒ HFunctor (f :.: ix) where

hmap f (Tag x) = Tag (hmap f x)

4.1 Generic compos
Using hmap, it is easy to define compos:

compos :: (Ix s ix,HFunctor (PF s))⇒
(∀ix.Ix s ix⇒ s ix→ ix→ ix)→ ix→ ix

compos f = to◦hmap (λ ix→ I∗ ◦ f ix◦unI∗)◦ from

The only differences to the version in Section 2 are due to the pres-
ence of a type representation s ix and because the actual values in
the structure are now wrapped in applications of the I∗ constructor.

Bringert and Ranta (2006) describe in their paper on compos
how to define the function on systems of mutually recursive
datatypes. Their solution, however, requires to modify the system
of datatypes and use a GADT representation such as the one in
Section 3.2. Our version of compos works on systems of mutually
recursive datatypes without modification. As an example, consider
the following expression:

example = Let ("x" := Mul (Const 6) (Const 9))
(Add (EVar "x") (EVar "y"))

The following function renames all variables in example – note how
renameVar’ can use the type representation to take different actions
for different nodes – in this case, filter out nodes of type Var.

renameVar ::Expr→ Expr
renameVar = renameVar’ Expr

where
renameVar’ :: Ix AST a⇒ AST a→ a→ a
renameVar’ Var x = x++"_"
renameVar’ x = compos renameVar’ x

The call renameVar example yields:

Let ("x_" := Mul (Const 6) (Const 9))
(Add (EVar "x_") (EVar "y_"))

4.2 Generic fold
We can also define fold using hmap. Again, the definition is very
similar to the single-datatype version:

type Algebra s r = ∀ix.Ix s ix⇒ s ix→ PF s s r ix→ r ix

fold :: (Ix s ix,HFunctor (PF s))⇒ Algebra s r→ ix→ r ix
fold f = f index◦hmap (λ (I∗ x)→ fold f x)◦ from

Using fold is slightly trickier than using compos, because we have
to construct a suitable argument of type Algebra. This algebra ar-
gument involves a function operating on the pattern functor, which
is itself a generically derived datatype.

We can facilitate the construction of algebras by defining suit-
able combinators:

(&) :: (a s r ix→ r ix)→ (b s r ix→ r ix)→
((a :+: b) s r ix→ r ix)

(f & g) (L x) = f x
(f & g) (R x) = g x
infixr 5 &
tag :: (a s r ix→ r ix)→ ((a :.: ix) s r ix′→ r ix′)
tag f (Tag x) = f x

The (&) combinator lets us specify functions for different construc-
tors separately, and tag is required to wrap tagged components.
While it is possible to define more abbreviations for algebras, these
two functions suffice to present an expression evaluator as an ex-
ample.

Because different types in our system are mapped to different
results, we need a family of datatypes for the result type of our
algebra:

data family Value a ::∗
data instance Value Expr = EV (Env→ Int)
data instance Value Decl = DV (Env→ Env)
data instance Value Var = VV Var

type Env = [(Var, Int)]

An environment maps variables to integers. Expressions can con-
tain variables, we therefore interpret them as functions from en-
vironments to integers. Declarations can be seen as environment
transformers. Variables evaluate to their names. We can now state
the algebra:

evalAlgebra ::Algebra AST Value
evalAlgebra =

tag (λ (K x) → EV (const x))
& tag (λ (I (EV x) :×: I (EV y)) → EV (λm→ x m+ y m))
& tag (λ (I (EV x) :×: I (EV y)) → EV (λm→ x m ∗ y m))
& tag (λ (I (VV x)) → EV (fromJust◦ lookup x))
& tag (λ (I (DV e) :×: I (EV x)) → EV (λm→ x (e m)))
& tag (λ (I (VV x) :×: I (EV v)) → DV (λm→ (x,v m) : m))
& tag (λ (I (DV f) :×: I (DV g))→ DV (g◦ f))
& tag (λ (K x) → VV x)

Testing

eval ::Expr→ Env→ Int
eval x = let (EV f) = fold evalAlgebra x in f

in the expression eval example [("y",−12)] yields 42.

5. The Zipper
For a tree-like datatype, the Zipper (Huet 1997) is a derived data
structure that allows efficient navigation through a tree, along its
recursive nodes. At every moment, the Zipper keeps track of a
location: a point of focus paired with a context that represents the
rest of the tree. The focus can be moved up, down, left, and right.

For regular datatypes, it is well-known how to define Zippers
generically (Hinze et al. 2004). In the following, we first show how
to define a Zipper for a system of mutually recursive datatypes us-
ing our example of abstract syntax trees (Section 5.1). Then, in Sec-
tion 5.2, we give a generic algorithm in terms of the representations
derived in Section 3.

5.1 Zipper for mutually recursive datatypes
We first give a non-generic presentation of the Zipper for abstract
syntax trees. We use the datatypes as given in Section 3.1.

A location is the current focus paired with context information.
In a setting with multiple types, the type of the focus ix is not known
– hence, we make it existential, and carry around a representation
of type AST ix:

data LocAST ::∗→ ∗ where
Loc ::AST ix→ ix→ CtxsAST a ix→ LocAST a

The type CtxsAST encodes context information for the focus as a
path from the focus to the root of the full tree. The path is stored in
a stack of context frames:

data CtxsAST ::∗→ ∗→ ∗ where
Empty ::CtxsAST a a
(:.) ::CtxAST ix b→ CtxsAST a ix→ CtxsAST a b

A context stack of type CtxsAST a b represents a value of type a
with a b-typed hole in it. More specifically, a stack consists of
frames of type CtxAST ix b that represent constructor applications
that yield an ix-value with a hole of type b in it. The full tree that is
represented by a location can be recovered by plugging the value in
focus into the topmost context frame, plugging the resulting value
into the next frame, and so on. For this to work, the target type ix
of each context frame must be equal to the type of the hole in the
remainder of the stack – as enforced by the type of (:.).

5.1.1 Contexts
A single context frame CtxAST is following the structure of the
types in the AST system closely.

data CtxAST ::∗→ ∗→ ∗ where
AddC1 ::Expr→ CtxAST Expr Expr
AddC2 ::Expr→ CtxAST Expr Expr
MulC1 ::Expr→ CtxAST Expr Expr
MulC2 ::Expr→ CtxAST Expr Expr
EVarC :: CtxAST Expr Var
LetC1 ::Expr→ CtxAST Expr Decl
LetC2 ::Decl→ CtxAST Expr Expr

BindC1 ::Expr→ CtxAST Decl Var
BindC2 ::Var → CtxAST Decl Expr
SeqC1 ::Decl→ CtxAST Decl Decl
SeqC2 ::Decl→ CtxAST Decl Decl

The relation between CtxAST and AST becomes even more pro-
nounced if we also look at the user-defined pattern functor PFAST
from Section 3.3. For every constructor in PFAST, we have as many
constructors in CtxAST as there are recursive positions. Into a re-
cursive position, we can descend. The type of the recursive position
then becomes the second argument of CtxAST. The other compo-
nents of the original constructor are stored in the context. As an
example, consider:

Let :: Decl→ Expr→ Expr
LetF :: r Decl→ r Expr→ PFAST r Expr

We have two recursive positions. If we descend into the first, then
Decl is the type of the hole, while Expr remains – and so we get

LetC1 ::Expr→ CtxAST Expr Decl

If, however, we descend into the second position, then Expr is the
type of the hole with Decl remaining:

LetC2 ::Decl→ CtxAST Expr Expr

5.1.2 Navigation
We now define functions that move the focus, transforming a loca-
tion into a new location. These functions return their result in the
Maybe monad, because navigation may fail: we cannot move down
from a leaf of the tree, up from the root, or right if there are no more
siblings in that direction.

Moving down analyzes the current focus. For all constructors
that do not build leaves, we descend into the leftmost child by
making it the new focus, and by pushing an appropriate frame onto
the context stack. For leaves, we return Nothing.

down ::LocAST ix→Maybe (LocAST ix)
down (Loc Expr (Add e e’) cs) =

Just (Loc Expr e (AddC1 e’ :. cs))
down (Loc Expr (Mul e e’) cs) =

Just (Loc Expr e (MulC1 e’ :. cs))
down (Loc Expr (EVar x) cs) =

Just (Loc Var x (EVarC :. cs))
down (Loc Expr (Let d e) cs) =

Just (Loc Decl d (LetC1 e :. cs))
down (Loc Decl (x := e) cs) =

Just (Loc Var x (BindC1 e :. cs))
down (Loc Decl (Seq d d’) cs) =

Just (Loc Decl d (SeqC1 d’ :. cs))
down = Nothing

The function up is applicable whenever the current focus is not the
root of the tree, i.e., whenever the context stack is non-empty. We
then analyze the first context frame and plug in the current focus.

up ::LocAST ix→Maybe (LocAST ix)
up (Loc e (AddC1 e’ :. cs)) = Just (Loc Expr (Add e e’) cs)
up (Loc e’ (AddC2 e :. cs)) = Just (Loc Expr (Add e e’) cs)
up (Loc e (MulC1 e’ :. cs)) = Just (Loc Expr (Mul e e’) cs)
up (Loc e’ (MulC2 e :. cs)) = Just (Loc Expr (Mul e e’) cs)
up (Loc x (EVarC :. cs)) = Just (Loc Expr (EVar x) cs)
up (Loc d (LetC1 e :. cs)) = Just (Loc Expr (Let d e) cs)
up (Loc e (LetC2 d :. cs)) = Just (Loc Expr (Let d e) cs)
up (Loc x (BindC1 e :. cs)) = Just (Loc Decl (x := e) cs)
up (Loc e (BindC2 x :. cs)) = Just (Loc Decl (x := e) cs)
up (Loc d (SeqC1 d’ :. cs)) = Just (Loc Decl (Seq d d’) cs)
up (Loc d’ (SeqC2 d :. cs)) = Just (Loc Decl (Seq d d’) cs)
up = Nothing

The function right succeeds for nodes that actually have a right
sibling. The size of the context stack remains unchanged: we just
replace its top element with a new frame.

right ::LocAST ix→Maybe (LocAST ix)
right (Loc e (AddC1 e’ :. cs)) =

Just (Loc Expr e’ (AddC2 e :. cs))
right (Loc e (MulC1 e’ :. cs)) =

Just (Loc Expr e’ (MulC2 e :. cs))
right (Loc d (LetC1 e :. cs)) =

Just (Loc Expr e (LetC2 d :. cs))
right (Loc x (BindC1 e :. cs)) =

Just (Loc Expr e (BindC2 x :. cs))
right (Loc d (SeqC1 d’ :. cs)) =

Just (Loc Decl d’ (SeqC2 d :. cs))
right = Nothing

5.1.3 Using the Zipper
To use the Zipper, we need functions to turn syntax trees into
locations, and back again. For manipulating trees, we provide an
update operation that replaces the subtree in focus.

To enter the tree, we place it into the empty context:

enter ::Expr→ LocAST Expr
enter e = Loc Expr e Empty

To leave, we move up as far as possible and then return the expres-
sion in focus.

leave ::LocAST Expr→ Expr
leave (Loc e Empty) = e
leave loc = leave (fromJust (up loc))

To update the tree, we pass in a function capable of modifying
the current point of focus. Because the value in focus can have
different types, this function needs to be parameterized by the type
representation.

update :: (∀ix.AST ix→ ix→ ix)→
LocAST Expr→ LocAST Expr

update f (Loc ix x cs) = Loc ix (f ix x) cs

As an example, we modify the multiplication in

example = Let ("x" := Mul (Const 6) (Const 9))
(Add (EVar "x") (EVar "y"))

To combine the navigation and edit operations, it is helpful to
make use of flipped function composition (>>>) ::(a→ b)→ (b→
c)→ (a→ c) and monadic composition (>=>) ::Monad m⇒ (a→
m b)→ (b→m c)→ (a→m c). The call

enter>>>down>=>down>=> right>=>update solve>>>
leave>>> return $ example

with
solve ::AST ix→ ix→ ix
solve Expr = Const 42
solve x = x

results in

Just (Let ("x" := Const 42) (Add (EVar "x") (EVar "y")))

5.2 A generic Zipper
We now define a Zipper generically for a system of mutually re-
cursive datatypes. We make the same steps as in the example for
abstract syntax trees before.

The type definitions for locations and context stacks stay essen-
tially the same:

data Loc :: (∗→ ∗)→∗→ ∗ where
Loc :: (Ix s ix,Zipper (PF s))⇒ ix→ Ctxs s a ix→ Loc s a

data Ctxs :: (∗→ ∗)→∗→ ∗→ ∗ where
Empty ::Ctxs s a a
(:.) :: Ix s ix⇒ Ctx (PF s) s ix b→ Ctxs s a ix→ Ctxs s a b

Instead of storing a type representation in a Loc such as AST ix,
we now require two things via class constraints: the type ix must
be part of the system s, as expressed by Ix s ix. Furthermore, we
need a Zipper for the system s. This condition is expressed by
Zipper (PF s) and will be explained in more detail below.

In the stack Ctxs, we also require that the types of the elements
are in s via the constraint Ix s ix.

5.2.1 Contexts
The context type is defined generically on the pattern functor of s.
We thus reuse the type family PF defined in Section 3. We have
to distinguish between different type constructors that make up the
pattern functor, and therefore define Ctx as a datatype family:

data family Ctx f :: (∗→ ∗) -- datatype system s
→∗ -- index type ix
→∗ -- hole type b
→∗

The simple cases are for constant types, sums and products. There
is a correspondence between the context of a datatype and its
formal derivative (McBride 2001):

data instance Ctx (K a) s ix b = CK Void
data instance Ctx (f :+: g) s ix b = CL (Ctx f s ix b)

| CR (Ctx g s ix b)
data instance Ctx (f :×: g) s ix b = C1 (Ctx f s ix b) (g s I∗ ix)

| C2 (f s I∗ ix) (Ctx g s ix b)

For constants, there are no recursive positions, hence we produce
an empty datatype, i.e., a datatype with no constructors:

data Void

For a sum, we are given either an f or a g, and compute the context
of that. For a product, we can descend either left or right. If we
descend into f, we pair a context for f with g. If we descend into g,
we pair f with a context for g.

We are left with the cases for I and (:.:). According to the
analogy with the derivative, the context of the identity should be the
unit type. However, we are in a situation where there are multiple
types involved. The type index of I fixes the type of the hole. We
express this type equality as follows, by means of a GADT:2

data instance Ctx (I xi) s ix b where
CId ::Ctx (I xi) s ix xi

For the case of tags, we have a similar situation. A tag does not
affect the structure of the context, it only provides information for
the type system. In this case, not the type of the hole, but the type
of the context itself is required to match the type index of the tag:

data instance Ctx (f :.: xi) s ix b where
CTag ::Ctx f s xi b→ Ctx (f :.: xi) s xi b

This completes the definition of Ctx. We can convince ourselves
that instantiating Ctx to PF AST results in a datatype that is iso-
morphic to CtxAST. It is also quite a bit more complex than the
hand-written variant, but fortunately, the programmer never has to
use it directly. Instead, we can interface with it using generic navi-
gation functions.

5.2.2 Navigation
The navigation functions are again generically defined on the struc-
ture of the pattern functor. Thus, we define them in a class Zipper:

class Zipper f where
. . .

We will fill this class with methods incrementally.

Down To move down in a tree, we define a generic function first
in our class Zipper:

class Zipper f where
. . .
first :: (∀b.Ix s b⇒ b→ Ctx f s ix b→ a)→

f s I∗ ix→Maybe a

The function takes a functor f s I∗ ix and tries to split off its first
recursive component. This is of some type b with Ix s b. The rest
is a context of type Ctx f s ix b. The function takes a continuation
parameter that describes what to do with the two parts. Function
down is defined in terms of first:

down ::Loc s ix→Maybe (Loc s ix)
down (Loc x cs) = first (λ z c→ Loc z (c :. cs)) (from x)

We try to split the tree in focus x. If this succeeds, we get a new
focus z and a new context frame c. We push c on the stack.

We define first by induction on the structure of pattern functors.
Constant types constitute the leaves in the tree. We cannot descend,
and return Nothing.

instance Zipper (K a) where
. . .
first f (K a) = Nothing

2 Currently, GHC does not allow instances of datatype families to be defined
as GADTs. In the actual implementation, we therefore simulate the GADT
by including an explicit proof of type equality (Peyton Jones et al. 2006;
Baars and Swierstra 2002).

In a sum, we descend further, and add the corresponding context
constructor CL or CR to the context.

instance (Zipper f,Zipper g)⇒ Zipper (f :+: g) where
. . .
first f (L x) = first (λ z c→ f z (CL c)) x
first f (R y) = first (λ z c→ f z (CR c)) y

We want to get to the first child. Therefore, we first try to descend
to the left in a product. Only if that fails (mplus), we try to split the
right component.

instance (Zipper f,Zipper g)⇒ Zipper (f :×: g) where
. . .
first f (x :×: y) = first (λ z c→ f z (C1 c y)) x

‘mplus‘ first (λ z c→ f z (C2 x c)) y

In the I case, we have exactly one possibility. We split I (I∗ x) into
x and the context CId and pass the two parts to the continuation f:

instance Zipper (I xi) where
. . .
first f (I (I∗ x)) = return (f x CId)

It is interesting to see why this types: the type of x is xi, so applying
f to x instantiates b to xi and forces the second argument of f to be
of type Ctx (I xi) s ix xi. But that is exactly the type of CId.

Finally, for a tag, we also descend further and apply CTag to the
context.

instance Zipper f⇒ Zipper (f :.: xi) where
. . .
first f (Tag x) = first (λ z c→ f z (CTag c)) x

This types because Tag introduces the refinement that CTag re-
quires: applying CTag to c results in Ctx (f :.: xi) s xi b. This can
be passed to f only if ix from the type of first is equal to xi. But it
is, because the pattern match on Tag forces it to be.

Up Now that we can move down, we also want to move up again.
We employ the same scheme as before: using an inductively defined
generic helper function fill, we then define up. The function fill has
the following type:

class Zipper f where
. . .
fill :: Ix s b⇒ b→ Ctx f s ix b→ f s I∗ ix

The function takes a value together with a compatible context frame
and plugs them together, producing a value of the pattern functor.
This operation is total, so no Maybe is required in the result.

With fill, we can define up as follows:

up ::Loc s ix→Maybe (Loc s ix)
up (Loc x Empty) = Nothing
up (Loc x (c :. cs)) = Just (Loc (to (fill x c)) cs)

We cannot move up in the root of the tree and thus fail on an empty
context stack. Otherwise, we pick the topmost context frame, and
call fill. Since fill results in a value of the pattern functor, we have
to convert back into the original form using to.

We give the instances for fill, starting with K. As an argument
to fill, we need a context for K, for which we defined but one
constructor CK with a Void parameter. In other words, in order
to call fill on K, we have to produce a value of Void, which, apart
from ⊥, is impossible. In the context of our Zipper library, we can
guarantee that ⊥ is never produced for Void. We therefore define:

instance Zipper (K a) where
. . .
fill x (CK void) = impossible void

impossible ::Void→ a
impossible void = error "impossible"

Nothing interesting happens in the sum case. We simply call fill
recursively on the branch we are in:

instance (Zipper f,Zipper g)⇒ Zipper (f :+: g) where
. . .
fill x (CL c) = L (fill x c)
fill x (CR c) = R (fill x c)

For products we also fill recursively, on the argument indicated by
the context:

instance (Zipper f,Zipper g)⇒ Zipper (f :×: g) where
. . .
fill x (C1 c y) = fill x c :×: y
fill y (C2 x c) = x :×: fill y c

For I, we return the element to plug itself, wrapped by the appro-
priate constructors:

instance Zipper (I xi) where
. . .
fill x CId = I (I∗ x)

Again, this only types because of the refinement introduced by CId:
the x is of type b, so I (I∗ x) would normally be of type I b s I∗ ix,
not I xi s I∗ ix. But pattern matching on CId forces b and xi to be
equal.

For a tag, we call fill recursively on the tagged context:

instance Zipper f⇒ Zipper (f :.: xi) where
. . .
fill x (CTag c) = Tag (fill x c)

Once more, the refinement introduced by CTag is required for the
use of Tag to be correct.

Right As a final example of a navigation function, we define
right. We again employ the same scheme as before. We define a
generic function next with the following type:

class Zipper f where
. . .
next :: (∀b.Ix s b⇒ b→ Ctx f s ix b→ a)→

(Ix s b⇒ b→ Ctx f s ix b→Maybe a)

The function takes a context frame and an element that fits into the
context. By looking at the context, it tries to move the focus one
element to the right, thereby producing a new element – possibly
of different type – and a new compatible context. These can, as in
first, be combined using the passed continuation.

With next, we can define right:

right ::Loc s ix→Maybe (Loc s ix)
right (Loc x Empty) = Nothing
right (Loc x (c :. cs)) = next (λ z c’→ Loc z (c’ :. cs)) x c

We cannot move right in the root of the tree, thus right fails in
an empty context. Otherwise, we only need to look at the topmost
context frame, and pass it to next, together with the current focus.
On success, we take the new focus, and push the new context frame
back on the stack.

The case next for K is again impossible:

instance Zipper (K a) where
. . .
next f x (CK void) = impossible void

In the case for sums we just call next recursively:

instance (Zipper f,Zipper g)⇒ Zipper (f :+: g) where
. . .
next f x (CL c) = next (λ z c→ f z (CL c)) x c
next f y (CR c) = next (λ z c→ f z (CR c)) y c

The case for products is the most interesting one. If we are currently
in the first component, we try to move to the next element there,

but if this fails, we have to select the first child of the second
component, calling first. In that case, we also have to plug the old
focus x back into its context c, using fill. If, however, we are already
in the right component, we do not need a case distinction and just
try to move further to the right using next.

instance (Zipper f,Zipper g)⇒ Zipper (f :×: g) where
. . .
next f x (C1 c y) = next (λ z c’→ f z (C1 c’ y)) x c

‘mplus‘ first (λ z c’→ f z (C2 (fill x c) c’)) y
next f y (C2 x c) = next (λ z c’→ f z (C2 x c’)) y c

Since I represents a single child, we cannot move right in such a
location:

instance Zipper (I xi) where
. . .
next f x CId = Nothing

On a tagged type, we recurse:

instance Zipper f⇒ Zipper (f :.: xi) where
. . .
next f x (CTag c) = next (λ z c’→ f z (CTag c’)) x c

5.2.3 Using the Zipper
The functions enter, leave and update can be converted from the
specific case for AST almost without change. We have to adapt
the types and respect the fact that Loc no longer carries a type
representation. Instead, we must add a type representation as an
argument to enter to help the type checker to associate a system of
datatypes s with the type ix.

enter :: (Ix s ix,Zipper (PF s))⇒ s ix→ ix→ Loc s ix
enter x = Loc x Empty
leave ::Loc s ix→ ix
leave (Loc x Empty) = x
leave loc = leave (fromJust (up loc))
update :: (∀ix.Ix s ix⇒ s ix→ ix→ ix)→

Loc s ix→ Loc s ix
update f (Loc x cs) = Loc (f index x) cs

Let us repeat the example from before, but now use the generic Zip-
per: apart from the additional argument to enter, nothing changes

enter Expr >>>down>=>down>=> right>=>update solve>>>
leave>>> return $ example

and the result is also the same:

Just (Let ("x" := Const 42) (Add (EVar "x") (EVar "y")))

6. Generic rewriting
Term rewriting can be specified generically, for arbitrary regular
datatypes, if these are viewed as fixed points of functors (Jansson
and Jeuring 2000; Noort et al. 2008). In the following we show
how to generalize term rewriting even further, to work on systems
with an arbitrary number of datatypes. For reasons of space, we do
not discuss generic rewriting in complete detail, but focus on the
operation of matching the left-hand side of a rule with a term.

6.1 Schemes of regular datatypes
Before tackling matching on systems of mutually recursive data-
types, we briefly sketch the ideas behind its implementation on
regular datatypes. Consider how to implement matching for the
simple version of the Expr datatype introduced in Section 2. First,
we define expression schemes, which extend expressions with a
constructor for rule meta-variables. Then we define matching of
those schemes against expressions:

data ExprS = MetaVar String | ConstS Int
| AddS ExprS ExprS |MulS ExprS ExprS

match ::ExprS→ Expr→Maybe [(String,Expr)]

On success, match returns a substitution mapping meta-variables to
matched subterms. For example, the call

match (MulS (MetaVar "x") (MetaVar "y"))
(Mul (Const 6) (Const 9))

yields Just [("x",Const 6),("y",Const 9)].
To implement match generically, we need to define the scheme

of a datatype generically. To this end, recall that a regular datatype
is isomorphic to the type Fix f, for a suitably defined f. A meta-
variable can appear deep inside a scheme, this suggests that the
extension with MetaVar should take place inside the recursion, and
hence on f. This motivates the following definition for schemes of
regular datatypes:

type Scheme a = Fix (K String :+: PF a)

For example, the expression scheme that is used above as the first
argument to match can be represented by

In (R (R (R (I (In (L (K "x"))) :×: I (In (L (K "y")))))))

6.2 Schemes of a datatype system and substitutions
A system of mutually recursive datatypes requires as many sorts of
meta-variables as there are datatypes. For example, for the system
used in Section 3, we need three meta-variables, ranging over Expr,
Decl and Var, respectively. Fortunately, we can deal with all these
meta-variables in one go:

type Scheme s = HFix ((K String :+: PF s) s)

As in the regular case, the pattern functor is extended with a meta-
variable representation. We want meta-variable representations to
be polymorphic, so, unlike other constructors, K String is not
tagged with (:.:). Now, the same representation can be used to
encode meta-variables that match, for example, Expr, Decl and
Var.

Dealing with multiple datatypes affects the types of substi-
tutions. We cannot use a homogeneous list of mappings as we
did earlier, because different meta-variables may map to different
datatypes. We get around this difficulty by existentially quantifying
over the type of the matched datatype:

data DynIx s = ∀ix.Ix s ix⇒DynIx (s ix) ix
type Subst s = [(String,DynIx s)]

6.3 Generic matching
Generic matching is defined as follows3:

type MatchM s a = StateT (Subst s) Maybe a

matchM :: (HZip (PF s), Ix s ix)⇒
Scheme s ix→ I∗ ix→MatchM s ()

matchM (HIn (L (K metavar))) (I∗ e)
= do subst← get

case lookup metavar subst of
Nothing→ put ((metavar,DynIx index e) : subst)
Just → fail ("repeated use: "++metavar)

matchM (HIn (R r)) (I∗ e)
= combine matchM r (from e)

3 Currently, GHC does not unify the types PF s s ix and PF s′ s′ ix, even
if it unifies the equivalent types that use equality constraints. This problem
causes GHC 6.8.3 to reject matchM. To make matchM typeable, the actual
implementation desugars the type of from to (Ix s ix,a∼PF s) ⇒ ix →
a s I∗ ix.

Generic matching tries to match a term (I∗ ix) against a scheme of
that type (Scheme s ix). The resulting information is returned in
the MatchM monad. The definition of MatchM uses Maybe for
indicating possible failure, and on top of that monad we use the
state transformer StateT. The state monad is used to thread the
substitution as we traverse the scheme and the term in parallel.

Generic matching consists of two cases. When dealing with a
meta-variable, we first check that there is no previous mapping
for it. (For the sake of brevity, we do not show how to deal with
multiple occurrences of a meta-variable.) If that is the case, we
update the state with the new mapping. The second case deals
with matching constructors against constructors. More specifi-
cally, this corresponds to matching Mul (Const 6) (Const 9) against
MulS (MetaVar "x") (MetaVar "y"). This is handled by the
generic function combine, which matches the two pattern functor
representations. If the representations match (as in our example),
then matchM is applied to the recursive occurrences (for instance,
on MetaVar "x" and Const 6, and MetaVar "y" and Const 9).

Now we can write the following wrapper on matchM to hide the
use of the state monad that threads the substitution:

match :: (HZip (PF s), Ix s ix)
⇒ Scheme s ix→ ix→Maybe (Subst s)

match scheme tm = execStateT (matchM scheme (I∗ tm)) []

6.4 Generic zip and combine
The generic function combine is defined in terms of a another
function, which is a generalization of zipWith for arbitrary functors.
Like hmap, the function hzipM is defined by induction on the
pattern functor by means of a type class:

class HZip f where
hzipM ::Monad m⇒

(∀ix.Ix s ix⇒ s ix→ r ix→ r′ ix→m (r′′ ix))→
f s r ix→ f s r′ ix→m (f s r′′ ix)

The function hzipM takes an argument that combines the r and r′

structures stored in the pattern functor. The traversal is performed
in a monad to notify failure when the functor arguments do not
match, and to allow the argument to use state, for example.

In our case, we are not interested in the resulting merged struc-
ture (r′′ ix). Indeed, matchM stores information only in the state
monad, so we define combine to ignore the result.

data K∗ a b = K∗{unK∗ ::a}
combine :: (Monad m,HZip f)⇒

(∀ix.Ix s ix⇒ r ix→ r′ ix→m ())→
f s r ix→ f s r′ ix→m ()

combine f x y = do hzipM wrapf x y
return ()

where wrapf x y = do f x y
return (K∗ ())

In the above, K∗ is used to ignore the type ix in the result. The
definition of hzipM does not differ much from that used when
dealing with a single regular datatype:

instance HZip (I xi) where
hzipM f (I x) (I y) = liftM I (f index x y)

instance (HZip a,HZip b)⇒ HZip (a :×: b) where
hzipM f (x1 :×: x2) (y1 :×: y2)

= liftM2 (:×:) (hzipM f x1 y1) (hzipM f x2 y2)
instance (HZip a,HZip b)⇒ HZip (a :+: b) where

hzipM f (L x) (L y) = liftM L (hzipM f x y)
hzipM f (R x) (R y) = liftM R (hzipM f x y)
hzipM f = fail "zip failed in :+:"

instance HZip f⇒ HZip (f :.: ix) where
hzipM f (Tag x) (Tag y) = liftM Tag (hzipM f x y)

instance Eq a⇒ HZip (K a) where
hzipM f (K x) (K y) | x≡ y = return (K x)

| otherwise = fail "zip failed in K"

In the definition above, we use liftM and liftM2 to turn the pure
structure constructors into monadic functions.

7. Related work
Malcolm (1990) shows how to define two mutually recursive types
as initial objects of functor-algebras. Swierstra et al. (1999) show
how to implement fixed points for mutual recursive datatypes in
Haskell. They introduce a new fixed point for every arity of mutu-
ally recursive datatypes. None of these approaches can be used as a
basis for an implementation of fixed points for mutually recursive
datatypes in Haskell suitable for implementing generic programs.

Several authors discuss how to generate folds and other re-
cursive schemes on mutually recursive datatypes (Böhm and Be-
rarducci 1985; Sheard and Fegaras 1993; Swierstra et al. 1999;
Lämmel et al. 2000). The definitions in these papers cannot be di-
rectly translated to Haskell because they require (type level) induc-
tion on the number of datatypes involved.

Mitchell and Runciman (2007) show how to obtain traversals
for mutually recursive datatypes using the class Biplate. However,
the type on which an action is performed remains fixed during a
traversal. In contrast, the recursion schemes from Section 4 can
apply their function arguments to subtrees of different types.

Since dependently typed programming languages have a much
more powerful type system than Haskell extended with GADTs
and type families, it is possible to define fixed-points for mutually
recursive datatypes in many dependently typed programming lan-
guages. Benke et al. (2003) give a formal construction for mutually
recursive datatypes as indexed inductive definitions in Alfa. Some
similarities with our work are that the pattern functor argument is
indexed by the datatype sort, and recursive positions specify the
sort index of the subtree. Altenkirch and McBride (2003) show how
to do generic programming in the dependently typed programming
language OLEG. We believe that it is easier to write generic pro-
grams on mutually recursive datatypes in our approach, since we do
not haves to deal with kind-indexed definitions, environments, type
applications, datatype variables and argument variables, in addition
to the cases for sums, products and constants.

McBride (2001) first described a generic Zipper on regular
datatypes, which was implemented in Epigram by Morris et al.
(2006). The Zipper has been used as an example of a type-indexed
datatype in Generic Haskell (Hinze et al. 2004), but again only for
regular datatypes. The dissection operator introduced by McBride
(2008) is also only defined for regular datatypes, although McBride
remarks that an implementation in a dependently typed program-
ming language for mutually recursive datatypes is possible.

8. Conclusions
Until now, many powerful generic algorithms were known, but their
adoption in practice has been hindered by their restriction to regular
datatypes. In this paper, we have shown that we can overcome this
restriction in a way that is directly applicable in practice: using
recent extensions of Haskell, we can define generic programs that
exploit the recursive structure of datatypes on systems of arbitrarily
many mutually recursive datatypes. For instance, extensive use
of generic programming becomes finally feasible for compilers,
which are often based on an abstract syntax that consists of many
mutually recursive datatypes. Furthermore, our approach is non-

invasive: the definitions of large systems of datatypes need not be
modified in order to use generic programming.

Furthermore, we have demonstrated our approach by imple-
menting several recursion schemes such as compos and fold, the
Zipper, and rewriting functionality.

The code for this paper is available and will be released as a
Haskell library soon.

In the future, we hope to investigate the application of our
representation using (:.:) to arbitrary GADTs, hopefully giving us
fold and other generic operations on GADTs, similar to the work of
Johann and Ghani (2008).

Acknowledgements José Pedro Magalhães and Marcos Viera
commented on a previous version of this paper. Claus Reinke
suggested to us the “type families desugaring trick” when we
had trouble getting our code type correct. This research has been
partially funded by the Netherlands Organisation for Scientific
Research (NWO), through its projects on “Real-life Datatype-
Generic Programming” (612.063.613) and “Scriptable Compilers”
(612.063.406).

References
Thorsten Altenkirch and Conor McBride. Generic programming within

dependently typed programming. In Generic Programming, pages 1–
20. Kluwer, 2003.

Arthur Baars and Doaitse Swierstra. Typing dynamic typing. In ICFP’02,
pages 157–166, 2002.

Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic
programs and proofs in dependent type theory. Nordic Journal of
Computing, 10(4):265–289, 2003.

Richard Bird and Lambert Meertens. Nested datatypes. In MPC’98, volume
1422 of LNCS, pages 52–67. Springer-Verlag, 1998.

Richard Bird, Oege de Moor, and Paul Hoogendijk. Generic functional
programming with types and relations. JFP, 6(1):1–28, 1996.

C. Böhm and A. Berarducci. Automatic synthesis of typed Λ-programs on
term algebras. Theoretical Computer Science, 39:135–154, 1985.

Björn Bringert and Aarne Ranta. A pattern for almost compositional
functions. In ICFP’06, pages 216–226, 2006.

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. As-
sociated type synonyms. In ICFP’05, pages 241–253, 2005.

Jeremy Gibbons. Design patterns as higher-order datatype-generic pro-
grams. In ACM SIGPLAN Workshop on Generic Programming, 2006.

Jeremy Gibbons. Polytypic downwards accumulations. In MPC’98, volume
1422 of LNCS, pages 207–233. Springer-Verlag, 1998.

T. Hagino. Category Theoretic Approach to Data Types. PhD thesis,
University of Edinburgh, 1987.

Ralf Hinze. Polytypic values possess polykinded types. In MPC’02, volume
1837 of LNCS, pages 2–27. Springer-Verlag, 2000.

Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types.
Science of Computer Programming, 51(2):117–151, 2004.

Stefan Holdermans, Johan Jeuring, Andres Löh, and Alexey Rodriguez.
Generic views on data types. In MPC’06, volume 4014 of LNCS, pages
209–234. Springer-Verlag, 2006.

Gérard Huet. The zipper. JFP, 7(5):549–554, 1997.

Graham Hutton and Jeremy Gibbons. The Generic Approximation Lemma.
Information Processing Letters, 79(4):197–201, 2001.

Patrik Jansson and Johan Jeuring. PolyP — a polytypic programming
language extension. In POPL’97, pages 470–482, 1997.

Patrik Jansson and Johan Jeuring. A framework for polytypic programming
on terms, with an application to rewriting. In Workshop on Generic
Programming, pages 33–45, 2000.

Patrik Jansson and Johan Jeuring. Polytypic unification. JFP, 8(5):527–
536, 1998.

Johan Jeuring. Polytypic pattern matching. In FPCA’95, pages 238–248,
1995.

Patricia Johann and Neil Ghani. Foundations for structured programming
with GADTs. In POPL’08, pages 297–308, 2008.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: A practical
design pattern for generic programming. In ACM SIGPLAN Workshop
on Types in Language Design and Implementation, pages 26–37, 2003.

Ralf Lämmel, Joost Visser, and Jan Kort. Dealing with large bananas. In
Workshop on Generic Programming, 2000.

Andres Löh. Exploring Generic Haskell. PhD thesis, Utrecht University,
2004.

Andres Löh, Johan Jeuring, Thomas van Noort, Alexey Rodriguez, Dave
Clarke, Ralf Hinze, and Jan de Wit. The Generic Haskell user’s guide,
Version 1.80 - Emerald release. Technical Report UU-CS-2008-011,
Utrecht University, 2008.

Grant Malcolm. Data structures and program transformation. Science of
Computer Programming, 14:255–279, 1990.

Conor McBride. Clowns to the left of me, jokers to the right (pearl):
dissecting data structures. In POPL’08, pages 287–295, 2008.

Conor McBride. The derivative of a regular type is its type of one-hole
contexts. strictlypositive.org/diff.pdf, 2001.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional program-
ming with bananas, lenses, envelopes, and barbed wire. In FPCA’91,
volume 523 of LNCS, pages 124–144. Springer-Verlag, 1991.

Neil Mitchell and Colin Runciman. Uniform boilerplate and list processing.
In ACM SIGPLAN Haskell Workshop, 2007.

Peter Morris, Thorsten Altenkirch, and Conor McBride. Exploring the
regular tree types. In Types for Proofs and Programs, LNCS. Springer-
Verlag, 2006.

Thomas van Noort, Alexey Rodriguez, Stefan Holdermans, Johan Jeuring,
and Bastiaan Heeren. A lightweight approach to datatype-generic rewrit-
ing. In Ralf Hinze, editor, ACM SIGPLAN Workshop on Generic Pro-
gramming, 2008.

Ulf Norell and Patrik Jansson. Polytypic programming in Haskell. In
Implementation of Functional Languages, volume 3145 of LNCS, pages
168–184. Springer-Verlag, 2004.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In ICFP’06, pages 50–61,
2006.

Tim Sheard and Leonidas Fegaras. A fold for all seasons. In FPCA’93,
pages 233–242, 1993.

Martijn van Steenbergen, Jeroen Leeuwestein, Johan Jeuring, José Pedro
Magalhães, and Sylvia Stuurman. Selecting (sub)expressions – generic
programming without generic programs. Unpublished, 2008.

Doaitse Swierstra, Pablo Azero Alcocer, and João Saraiva. Designing and
implementing combinator languages. In Advanced Functional Program-
ming, volume 1608 of LNCS, pages 150–206. Springer-Verlag, 1999.

Akihiko Takano and Erik Meijer. Shortcut deforestation in calculational
form. In FPCA’95, pages 306–313, 1995.

